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Abstract

A review of theoretical developments in predicting the buckling response of cylinders subject
to impulsive loads is presented. Most of this theory deal: with axisvmmetric, radial impulses
on cylinders. The development of solutions for the critical modes and loading magnitudes
which produce excessive growth of displacements are reviewed. Existing theories cover the
specific cases of either entirely elastic or entirely plastic material behaviour for infinite length
and short cylindrical shells. The resultant theories are applied to various shell geometries to
investigate influencial parameters. A review of numerica! fi.ite element and finite difference
studies which investigate dynamic pulse buckling is also given. The requirements to examine
dynamic buckling of more complex structures such as ring stiffened cylinders are discussed.

R~sum6

Un examen des perfectionnements thdoriques pour la prdiction de la rdaction au flambage
des cylindres soumis h des impulsions de charge est prdsent6. La plus grande partie de
cette th~orie a portd sur les impulsions radiales, axisymdtriques exercdes sur les cylindres.
On y examine aussi les solutions mises au point pour les amplitudes de charges et les
modes critiques qui produisent des ddplacements sans limites. Les theories existantes
portent sur des cas prdcis de comportement des mat~riaux entirement dlastiques ou
entiirement plastiques pour des enveloppes cylindriques courtes et des longueur infinie.
Les thdories qui en d~coulent sont appliqu~es A diffdrentes g~omdtries d'enveloppes afin
d'6tudier les param~tres d'influence. Un examen des dtude d'6l6ments finis numeriques et
d'6carts finis relatives l'6tude du flambage par impulsion dynamique est aussi prdsent6.
On y traite des exigences pour l'tude du flambage dynamique de structures plus complexes
comme des cylindres renforc~s de frettes.
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Notation

a shell radius to mid thickness

a, (7), b, (7) asymmetric amplitudes of motion

a0. u,0 radial hoop mode arnplitudo

Ancr displacement amplification from autoparametric excitation of flexural
mode

A, (Q). B,(C) amplification functions for displacement and velocity imperfections

B, = VOan/pn

c speed of sound in material = constant in equation (159)

Ch - Eh/p

C(q).f.q. qo.c.77 coefficients defined in equation (161)

C 1.C CC 3 ,C 4 .C5. C6  constants defined in reference 17

dA differential arc length of shell

D, - o3,,/Pn

D 12E(1-j.2)

Eh strain hardening tangent modulus

EI equivalent Young's Modulus -

E Young's Modulus

Et tangent modulus

f,, I,,,i generalized variables, dependent on n

F stress function

h shell thickness

he shell thickness

I tmroment of inertia



IA asymptotic peak impulse

Ifi critical impulse from Dirac delta function

I, peak impulse amplitude

k variable length parameter

At', =2(1-k+k2 )

K 2  
(3K 1 /2) 1/ 2

K 3  (2 - k)/K 1

K material curve parameter defined as

L length of shell

1 nondimensional length = L/a

resultant moment in i directinn

m mass of shell material= ph

n circumferential harmonic wave number

ncr circumferential harmonic of greatest unbounded growth

Ni resultant membrane force in i coordinate direction

pn = (n 2 - 1)(,n2- 2)

p stability parameter = Io/co

P radial pressure

P(7) axisymmetric pressure amplitude

P, (7) asymmetric pressure amplitude

PA asymptotic peak pressure

PO minimum p,,lse amplitude to cause buckling

P,402.-, 'K2
n
'

3(2-k)a

p, D constants defining material curves that are strain rate( dependent

vi



Q shear force

Ql parameier of Bessel equation, defined in text

r deformed shell radius = a - w.,

R'2 parameter of Bessel equation, defined in text

R radius of deformed motion, = a(1 - w')

S circumferential membrane force

2 nondimensional shell parameter= Sa 2 /E I 12cTa2 /Eh 2 for plastic

flow buckling.= p/a for elastic buckling

Sn parameter of Bossel equation. defined in text

t time

T kinetic energy or pulse duration time

TT pulse time defining plastic flow solution

TE pulse time defining elastic. quasi-static solution

ty time spent in elastic motion

u nondimensional radial displacement= w/a

U strain energy of shell

;-,  P- -a, Zyrgy of ho ' rTr e

U( strain energy of flexual mode

ILC complimentary solution of flexural modo

(,nn. I o n, mndiA amplitudes for axial harmonic, ii and circumferential harmonic.
n

particular solution to hoop mode

lo initial radial velocity

V0  nondimensional initial vocIy= V/12p al/hll

11 tangential displacement
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w radial displacement

initial shape imperfections,

u'. natural frequency of vibratloll

u radial motion in elatic regir,,'i

U'. final radial motion

Z radial inertia force

Z coordinate through shell tlickness

, ,,3, perturbations of the initial velocity

0k2 = h 2

- 12a2

3 critical damping ratio, or - E/ /E

,-', amplitudes of initial imperfections

6,, nondimensional initial shape imperfection

/ = t - ty

c strain

strain of shell midsurface

E, i midsurface strain of initial imperfections

Ef flexual strain

strain at yield

generalized strain rate

F,, = pA V 1 -- , 2

material viscosity constant

perturbation amplitude of sine functia

curvature for initial sha)e imperfections

shell curvature
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A wave parameter = n/s,

parameter of Mat hieu instability equation

1/ Poisson's Ratio

parameter of Mlathieu instability equation

0 angle of curvature after (leformnation

nondi niensional tangential displ acenment r/a(. also change In shell anglo
of curvature. 9 -o

1/p deformed radius of curvatutre

P shell material densit v

(T constant plastic flow stress

711 maximum stress in hoop mode

( 1  maximum st ress in flexuiiral modle

yield st ress

a generalized stress

de-iatoric stress of component I

an current nidsurface stress

a0  generalized stress at infinitesimally small straiii rate

'o term inat ion time of elastic nmotioin

7 1iioiidiiiinsioiial Iliine. defined ~In various sect ins

7 t I ~~i IiiCe to tevr i iI i Il r adIia i ot I II

[?l t inme at whli ch st ra in rate reversal occurs

19 circumnfe~rential coordlinate, also initial angle, of curvature of the sll1

cot;

C- -

7 / 7f



1 INTRODUCTION

Buckling under static loading is traditionally investigated in the design of shell structures.
Buckling instability is also a possible mode of failure in structures subject to dynamic loads.
Dynamic buckling of impulsively loaded shell structures occurs through unstable growth of
displacements during motion. Dynamic buckling has been considered in the design of such
structures as aircraft, automobiles, trains, pipelines and reactor pressure vessels to improve
their resistance to accidental impact or explosion loading. A dynamic buckling mode of failure
provides a high energy-absorbing mechanism which decreases the transmitted shock to internal
components or personnel. Improvement in design to resist shock loads from hostile weapons
or operational conditions has been the goal of considering dynamic buckling in the design of
military structures such as missiles and rockets. This study presents a review of theoretical
developments in dynamic pulse buckling to delineate the physical concepts of the process. This
review serves as a basis fo further work. it, developing an understanding of dynamic buckling
in the context of submarine pressure hull response to underwater shock loading.

Studies of submarine response to shock loading have concentrated on predicting the stress
level and pattern resulting from complex pulse-structure interaction [1.2] and have generally not
considered dynamic buckling failure which will probably occur after the material has reached
its yield limit. As in static load studies, critical combinations of structural parameters and
load will cause instability, and as in static analysis. detection of these dynamic stability limits
requires special formulae and/or numerical methods. Previous work in dynamic buckling has
been mainly for axisymmetric, pulse loading of unstiffened cylinders. The submarine problem is
mort, "omplex as it requires consideration of asymmetric pulse loading of ring stiffened cylinders.

The tern 'd vnamic buckling' has been used to describe two different types of structural
behaviour mechanisms. The first type is buckling of a structure subject to periodic loading
functions which result in a resonance with a buckling mode. This is termed 'parametric buck-
ling'. as the loading function is a parameter of the displacements in the differential equation
which describes the motion [3]. file load intensity to cause collapse can be lower than the
stat buckling load for parametric buckling behaviour. The second type of dynamic buckling
is usually termed 'pulse buckling' resulting from a transient loading function of a single pulse
form. Pulse loading intensities needed to cause buckling are larger than the static buckling
load. This review is concerned primarily with the latter, 'pulse buckling' definiton of dynamic
buckling, as it corresponds to buckling caused by shock loads.

An extensive review of the theory and analytical solutions to the pulse buckling problem is
given in Section 2 for the purpose of developing an understanding of the physics of dynamic
pulse buckling. The Stanford Research Institute (SRI) has devoted effort to this topic for the
last three decades and most relevant work comes from this source. A collht ion of SRI work
has been compiled in a comprehensive manuscript [4]. Other reviews of dynamic pulse buckling
are given in References [5,6.71. As is the case for theoretical studies of most complex problems,



analytical solutions have been derivtd only fo- relatively simple geometries and loading fuic-
tions. Asymmetric 'oading, ring stiffeners and other con ' lexities make analytical solutions for
pulse buckling of submarine pressure hulls unlikely. Numerical modelling by finite element or
finite difference methods offers a means of solving these more complex problems. In any type
of analysis, one must kn,,w before hand what structural behaviou Lo expect, and formulate
a model acccrdingly. The physics of dynamic buckling is complex, in that one may not know
if the response N1lI be elastic or plastic, of short duration or long, a..d indeed, one may also
not be able to define the mode or point of failure. Therefore an understanding of the theory
of dynamic buckling for simple cases is es3zntial betore undertaking more compl. numerical
irivestigatious.

Section 3 of this report gives approxnimat- formulae for the determination of critical buckling
modes and critical impulse loads for dyiiamic buckling of simplified cases. These have resulted
from assumptions made to the various theories. The effects of several shell geornetry and
material parameters on the critical modes and loads are investigated throigh these formulav.

A few studies have investigated response of shells to impulsive loading by finite element or
finite difference methods. A review of some of this work is given in Section 4.

2



2 THEORETICAL REVIEW

In static, linearly elastic, bifurcation buckling, the critical load is a well defin,,d point
dependinig only" on the structural geometry. material protperties and loading distribution. It
dynamic pulse buckling, the solution is for excessive growth of a particular moce or modes.
rather than for specific critical points. The intensity and duration of the load affect ti' huckliil2
mode as well as the total response. The response also depends on the time spent in the elastic
and plastic phases of the motion.

This section reviews theories for simplified physical cases of plastic flow pulse buckling and
elastic pulse buckling. All thcories start with the derivation of the equations of motio: for the
physical problem of concern. They then proceed to the solution for the unbuckled. axisym-
metric, radial hoop motion. The complimentary solution for the flexural buckling motion is
then considered for initial displacement and velocity perturbations with harmonic circunifrert-
tial variation. Nonlinear ordinary differential equations result, requiring numerical intpgrationl
for complete solution, unless linearizing assumptions can be justified. Dynamic instability is
determined by investigating the boundedness of the perturbed motion; this is the Liapunov
definition of instability [S]. In all cases investigated, the n,-,ninear differential equations aro
linearized and examined qualitatively to determine their stability via exponential growth of
certain critical modes.

Solutions for plastic behaviour (thick shells with small radius to thickness, a/l. ratios) and
elastic behaviour (thin shells with large a/h ratios) have been derived separately [9.101 and
are reviewed here to illustrate the governing physics of each case. Basic assumptions of either
entirely plastic or entirely elastic behaviour are needed to permit solution. The critical radius
to thickness ratio for transition from predominantly elastic to predominantly plastic response
is in the range of 100 to 200 for most engineering materials. The transition is not distinct.
Completely plastic behaviour can be assumed for a/i ratios below 40 and completely elastic
behaviour can be assumed for a/h ratios greater than 400. Shells of intermediate a/h ratios have
some combination of plastic and elastic behaviour. The magnitude of the pulse also affects the
ultimate response. Solutions for intermediate a/h ratio shells require consideration of significant
contributions from both elastic and plastic response. and no known analytical solutions have
been derived for this case.

This section presents discussions of the individual plastic and elastic theories followed by a
discussion of the work of Stuiver [11] who presents a common method of deriving both the elastic
and platic equations and shows that the plastic response has some dependency on the elastic
motion. Other studies which investigate the effects of shell length, pulse duration and spacial
shape, varying material properties and strain rate reversal on the shell motion and stability are
then reviewed. In order to facilitate the use of the various theories in design, most authors have
applied simplifying assumptions to derive approximate formulae for critical dynamic buckling
modes and iipulses. These are presented in Section 3 along with sample calculations using

3



these formillae for a wide rangfo of shcll parameters.
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2.1 Plastic Flow Pulse Buckling

Abrahamson and Goodier [9]. produced the first satisfactory solution to the dynamic pulse
buckling of shells in 1962. The solution was for completely plastic response of an infinite lengt h
cylinder to a perturbed axisymmetric velocity pulse. It was limited to cylinders of smaller a/h
ratios where elastic behaviour can be ignored. This is the simpler of the theories for dynamic
pulse buckling and illustrates the physics of problem very well. This theoretical work was
verified by considerable experimental investigation.

The basic assumption of this theory is that motion occurs entirely in the plastic material
regime and that the entire shell is in a state of continuously increasing compressive plane strain
with no strain rate reversal. Perturbed inextensional flexural modes are superimposed on the
axisymmetric. constant compressive plastic flow stress state. The resistance of the shell to the
motion comes from moments produced by a stress differential across the shell thickness as a
result of the strain hardening or tangent modulus. Thus, this theory has also been called the
'tangent modulus' theory as its existence is dependent upon the material having a non-zero
plastic tangent modulus.

2.1.1 Derivation of the Equation of Motion

Figure 1 illustrates the stress differential occuring in a shell perturbation (local disruption in
uniform radial motion) as a result of the strain hardening modulus. Eh. This stress differential
results in a bending moment:

M1 = Eh I (1)

where I = 11h3 for a unit width of shell and Kc is the curvature of the shell segment. the
derivation of which is given in Appendix A. and is defined as:

K 1=(2+w L (2)
a2 06u

The assumption is made itah the solution is for a ring or an infinite length cylinder; no
end effects or biaxial stress state are included in the curvature derivation. The radius and the
thickness of the shell are conservatively assumed to remain at their initial value throughout the
motion. In reality, the a/h ratio of the shell will decrease with the motion making the shell more
resistive to buckling. The mean circumferential hoop stress. am, is assummed to be constant
around the circumference and with time. In reality, am will vary as the radial deflection, w(o).
varies and more important, it will also increase due to strain hardening. The strain hardening
modulus is assumed to be constant and Crm is taken as the average stress in the post yield.
plastic flow region. This assumption affects the solution by overestimating the time required

5



UM~~~~ ~ ~ -SL ----- _OPE Er,

V) A

STRAIN -E

Figure 1: Strain Differential frum Strain Hardening (from reference [9])

for the hoop motion to absorb the kinetic energy of the impulse. The average compressive hoop
force in the shell is:

S> = 1Cm (3)

From Figure 2. equilibrium of forces results in:

ZM =M(l+Of)dx -MAdx- Q(dAdx= 0 (4')

which reduces to:

and:

ZFz =-(Q + dQ)dx + Qdxr + ZdAdx - Sdodr 0 (6)

which reduces to:
OQ 0 9cU

+ S- -M (7)
aA OA at2

where m is the mass/unit circumference and where 2-6 =1 in which 1 is the df-formed radius
IjA p p

of curvature defined by:
1 1 1 1 02 U.
-+ K- + --( + U'). (8)

p a a 2 02

6



S

a Qd

M
B S

Figure 2: Shell Force Components

Substituting equations (2) and (1) into equation (5) and equations (8) and(5) into equation (7)
gives the partial differential equation of motion for the shell:

EhI 9 U u' 1 1 9 2w 92 u,
4 ( -+ 02) + S[ + 2- (- + U)] = -m - (9)

Reference [9] rewrites equation (9) in dimensionless form using:

w /EhI 1 Ehht n Sa2  12Urna2FE d ;2 =Sa 1u,(I0)
a rna~l 1 VT p a 2  EhI- Eh 1 2  (0

to give equation (9) as:

a4 u 2 U 2  a 2 u----+ (1 + S )-u+ 2U+ r2  
- (11)

2.1.2 Particular Solution

The particular solution to equation (11) is for the unperturbed. axisymmetric, radial motion
of the perfect ring (ie. w; is independent of 0). Equation (11) is reduced to:

-2U + 2 2 (12)

9r2



with initial conditions for an initial velocity pulse:

ou, OIL , l2pw(o) = u(o) = 0. and (--)t=o = o, which becomes (-)=0 =v -

and solution:
up(-) + COSS + Sin (187)

The duration of the inward hoop motion is established from the particular solution by deter-
mining the time at which the radial velocity vanishes. Setting the first derivitive of equation ( .1

equal to ::ero gives:

rf = arctan- (15)
S S

2.1.3 Perturbed Velocity Solution

Tue complimentary solution of equation (11) is derived assuming a harmonic circuinferen-
tial perturbation in the initial velocity profile of the shell:

(-)r= 0 - c'l - Z(O, Cos 0 +- 3, in S O) (16)
n=2

where an and 3, are parameters dependent on the degree of velocity perturbation. This results
in a solution of the form:

u(7) = -[f,,(r)cos nO + g,(r)sin n9] (17)
n=2

which after substitution into the homogeneous form of equation (11) gives:

n4f"(r) cos n0 + 714g77(isin n9 + (1 + s2)(-n2f,(r)cos n& - n72gn(r)sin n9)

+S2(fn(r)coS,10 + g,-,(7)sinl) + f,()cosIO + j',(r)sinnO = 0 (IS)

yiel.!ing the ordinary differential equation:

fn + [n. - n2 (1 + q2) + ,52]f77  0 (19)

and a similar equation for g,. The coefficient.

n"- 4 n2 ( 1 + ,,2 ) + S2= (, _ 1)(n 2  s2 ) = 12 (20)

determines the stability' of motion. For n < s. f, an( fl are hyperbolic, unstable functions and

for :I > .s, f, and g, are circular, stable functions. In other words, only circumferential modes,



n, which are less than the shell parameter. s, will grow exponentially' if the load intensity is
great enough. For example, a shell of parameters a/h=30, Eh = 10' psi and ci=75.00f0 psi has
a value s=29 which allows a large number of harmonics. n, to g-nw unbounded. One of these
unbounded harmonics will predominate.

Taking the value of s to be its nearest greater integer value, the complimentary solution of
f, and gn is:

n s

fn(r)= Z(An coshpr + B,, sinh p,,r)cos nO + S (A,j cosp,77 + B, sin p,7)co,7119 (21)
n=2 n=s+l

wherep = (n2 
- 1)(S2 

- n 2) for n < s, or, =( 2  1)(n2 -
2

) for n > s + 1.

2.1.4 Complete Solution

Adding equations (21) and (14) gives the complete solution as:

u(r.)= -1 + cos s + -- sinsr + E[(.4 cosh pnr + B, sinh p,7)cos nO
S n=~2

+(Cn coshp, + D,. sinh p,.r)sin nO] + E [(A, cosp, + B, sinp.r)cosn
n=s+l

+(C, cosp,r + D, sin p,-r) sin ,iG] (22)

A, and C,. are zero from the initial conditions (13) and B,. and Dn are determined from
the initial velocity perturbation. equation (16), to be: B, = and D. = giving the• Pn P

final solution as:

u(r,)= -+ cossr + Sinsr + z',,n = cos nO + ,3, sin nO)- sinh p,r

+t' n=s+l (On cos nO + 3,, sinl n)I- sin Pn7 (23)

The buckling instability occurs as a result of excessive growth of the -L sinhp,-r term. One

value of p,, will dominate the response. Taking the derivitive of- 1 sinh 2 pr gives the limit point
as:

(p2 = (s 1)2. orn = (s 2

4 2(2 )

For the shell dimensions used in the above example, (p,),. is 420 giving an nc, of 21 as the

critical mode for dynamic pulse buckling. The function IL sinhp,nT should be investigated forC, Pn
a range of n in the vicinity of 71,, and for a duration Tf defined by equation (15) to determine
the instability characteristics.

9



Since this theory has used the assumption of monotonically increasing compressive sinain.
the limit point of strain rate reversal has to be investigated. The total compressive strains
consisting of the hoop strain and flexural strain for the inside and outside surfaces, respectively.
are:

are[ h U h 02w h ,w h 2 u',
C(7.) +-1f- + - Il and !- 1- - I(2

2,a 2a 2 0 a 2a a 2a. 0(25)

These equations, upon substitution of equation (23) have to be investigated at various times
throughout the motion to determine the onset of strain rate reversal. The occurrence of strain
rate rev rsal is an indication that instability is imminent.

2.1.5 Discussion of Plastic Flow Buckling

A number of assumptions have been made in Abrahamson and ;oodier's plastic flow
buckling theory. They are:

1. The solution is for plane strain, and therefore an infinite cylinder or ring.

2. The loading function is a perturbed. axisymmetric, radial velocity impulse at the shell
surfa ce.

3. The solution ignores the elastic behaviour completely, and therefore is applicable to shels
with small a/ih ratios in which significant plastic flow will occur.

-1. The radial hoop motion is assumed to occur witi a constait stress value, and with constant
initial values of shell thickness and radius. The tangent modulus is also assumed to be
constant during the motion.

5. The stress state is one of continuously increasing compression and therefore, the theory
is only applicable up to the point of strain rate reversal.

All of these ass,'mptions have been addressed in studie, subsequent to that of Abrahamson and

Goodier [9], which are discussed in later sections.
Defining the velocity pulse parameters, ,, and 3,, is the main difficulty in using tiJ."

method to define a structure's response to a shock load. Reference [91 investigated several
velocity pulse profiles and although the buckled shapes differed, the results only varied by 5
percent.

For given shell dimenisions. thi, theory may be used to establish:

" the expected dominant mode shape of plastic pulse buckling via equation (24).

* an approximation to ile duration of the response time via equation (15).and

" the motion of the shell, given the velocity pulse parameters via equation (23).

10



To determine the critical impulse for dynamic buckling, one must establish a limit point at
which buckling is assumed to occur. This may be in the form of a specified amplitude as is
done in Section 3 where the derivation of approximate pulse buckling formulae is discussed, or
may be the point of strain rate reversal detected by equation (25). Equations (23,24.15 and
25) have been investigated via a computer program for various a/h ratios, material parameters
and load amplitudes. The loading function used in the code is derived from reference [9] where
a parabolic perturbation is assumed. This involves only cosine. and thus Q, terms, and is of
the form: 1 32 1 1

(0.0) = t' [1 - 1--32(cos 0 - cos30 + cos50 -.. ) (26)

The maximum perturbation is 5 percent of v, and the n=1 term is irrelevent to the asymmetric

buckled shape. The on perturbation terms are then defined as o = L 0, . for n =

3,5,7...

.\lodei d ,/h Vo(in/sec) E;1(psi) )1 r(psi) vf tf(sec) I tSRIsec)
1 30 6,000 1,000,000 50,000 17 0.00243 0.00194
2 30 4,000 1,000,000 50,000 17 0.00175 0.00175

3 30 2,000 1,000,000 50,000 17 0.00093 none
4 30 500 1,000,000 50,000 17 0.00236 none
5 25 6.000 1,000.000 50,000 14 0.002 0.0018
6 20 6,000 1,000,000 50.000 It 0.00162 0.00146

7 15 6.000 1,000,000 50,000 9 0.00121 0.00121
8 10 6,000 1.000,000 50,000 6 0.00081 0.00081
9 30 6.000 500.000 50,000 24 0.00243 0.00194

10 30 6,000 10.000 50,000 165 0.00243 0.0019-1

11 30 6,000 5,000,000 50,000 8 0.00243 0.00242
12 30 6,000 1,000.000 60,00u 19 0.00207 0.00165

13 30 6.000 1.000,000 70.000 L 20 0.0018 0.00144

Table 1: Results of Plastic Flow Theory for Various Parameters

Figures 3 and 4 illustrate the growth of various modes at several values of time during the
response for models 2 and 9 of Table 1. It can be seen that the growth for several modes in
the vicinity of tr is exponential with time, with the nr mode becoming dominant. Table I
shows the critical mode, termination time, 7f, and the time at which strain rate reversal occurs.
rSRR, for several shell parameters. Model 2 (Figure 3). had 7 'SRR = 7f , so that the solution
remains valid throughout the motion. In model 9 (Figure .4), rf was great-r than 7pRJ: as a
result, th,, solution was no longer applicable because very rapid growth occur,, as can be seen

11
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Figure 3: Modal Growth for Model 2

in Figure -1. Trends from Table 1 indicate that the critical mode increases with increasing a/h.
decreases with increasing tangent modulus. EA. increases with increasing flow stress. cr.,. and
remains unchanged with variation in the magnitude of the initial velocity impulse. The time
of terminal motion. 7f (the time at which the shell velocity first reaches zero). is a function
of the rate at which the initial energy can be absorbed by" the shell. As the shell becomes
thicker (lower a/h ratio). 7f decreases and as the initial velocity (energy input) increases, r
increases. Abrahamson and Goodier [9] experimentally investigated the behaviour of several
long cylinders and found good agreement with the theoretical mode predictions for lower a/h
rat ios.

Reference [12] advances the theory of reference [9] to include initial shape imperfections in
the shell and the effect of increasing thickness, decreasing radius and varying natei;ai properties
on the response of the cylinder. The radius is now defined as:

r =a - , (27)

where ur, is the uniform radial motion. This results in a redefinition of the curvature as:

1 1 1 0 2 U,

r a + +0 02
An additional term in the curvature to include the initial imperfections is given as:

1 02 uw
K, = 1 (,,+ t) (29)

r2

12



,..9 f

< -f
-7-

E-r f

17 19 21 23 25 27 29 31

Figure -: Modal Growth for Model 9

so that equation ( ) becomes:
dQ 1 1- - N 4, +K, 30)OAX p a

Using equations (27 to 30) in quation (7) gives the equation of motion as:
E 4 u" 02 u•  5" 82 u•  02w,

E 4 (O -+ 0- ) ++ 0[( " w + O )+ w, + 2 J 77-m t2 (31

where h is now defined as h,, .

The solution of equation (31) follows that of equation (9) except that it must be evaluated
numerically if variations in Eh. a7. h and r are to be considered. This formulation has been used
in reference [12] to establish critical velocities for which excessive buckling will not occur.

An independent development of the plastic flow theory is given in Section 2.3 from Reference
[11] which encompasses the elastic influence on the plastic flow behaviour. The important
conclusion is that as the a/h ratio becomes higher, the elastic portion of the response influences
the formation of the critical mode and the ultimate motion.
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2.2 Elastic Pulse Bucklig

Goodier and Mlclv-or [10]. and( Litidberg [13.1], prodIucedl a theory of clast ic piil,,e lucklintz
for rings and long shells subject to pert urbed, axisvmmetric. velocity pl~use.-. similar to hle
pert urbat ion theory for p~lastic flow pulse buckling. The mode format ion occurs diiring- elastic
motion and the t heorv' considers only elastic behaviour. Flexural buckling rnodes ar-e assunted
to formt before the hoop) mode reaches yield . Additional energy above t hat which could hv
absorbed elasticallY in the hoop mnode is assumedl to go into furniing, permanent plastic 1I,1 Tin e
Ii the fiexu-ra] modes. For enigineerinig materials,, the elIastic buckled form canl occur for shells of
a Ilh rat i u greater than approximinatecly 260. S hells wvith Ii a /h ratio below tli> value wvill , v
their hoop mode enter the plastic flow region before sigitificanit elastic flexural motionI OCCIIr".
althbough the elastic motion wilil influence the resulting plastic flow buckling mode 11 ].

The mechanismn of producing bucklinz modles is a transfer of energy from a fuindamrental honop
Mode to flexuiral niodes,. Ti'Ls is also lie phyNsical mechanismi for plast ic flow buckli ng. Ilowi-ver.
ill the pla-t ic flow4 I'lcki hg I tleon. thle hoop mtodoe mribrane energyN is cons idera bly gra t en li a a
lhe energy wvhi clh i, ransfcrrej! to flex ural miodes and IIlie act ual energy- tranisfer is niot consider-d

tie, te loss of energ-y from the hoop inode is neglected). In elastic pulse buckling. alm-oST all
ener10gyI Canl be t rarifenred bet weom thle L~oop and flexural mode,,. Thfe differential equation of
mot ion for this case is the Mathlieum equation [L3> which is discussed funther in A'ipendix 13. The
MIa' hli enquat ioni miodels fr~iwfor of energy fronm a periodic loading funct ion to a vibrat orv-
ioicklingl miode of one half t!he frequency of the driving force. Parametric Instability results
if iifficiepni eniergy is transferred to caus,- buckling. Since we are dealing with pulse loading.
there, is- no period c ext ernial d ri xinri freu uenc v: 1.owever, the hoop miode oscillates ait a natuiiral

froque.cv zand emiergv can be transferred to a flexural mode of half of this hoop mode frequency.
I lis is termed atpaa tti'instability since the driving force is self generated. The inIl

difforonro wit I t he clascical parametric inistability is that the autopararnetric Instability case
,erit have a sustained energy input and if the shell does not buckle permnritlN on the first

ibtase of lie hoop motion, it will only vibrate withi a cord miuouns energy interchange bet w ci
hoop and! thexira I modles until damping ceases rthe motion. Thel( magn itutde of the initial velocitv
mi relationi to thie shllI geonet rv dictates whether permanent buckling or only vibrations will]
occur, TIxif buckling- does niot occur, stress valuies in -xcess of hoop mode stress v-allies are
generatod by the uperposit ion of the aniplified flexural niodes.

r;iceI tlj(e( 1111;1rig b~et veeji honop a tt(l flexural iciodes is an itegral part of lie montion. ono
1odo , a Ii rot be as 'u med to oce iir itA lependenti I J~ the other, as Ili ble plastic flow buck] i11
teorY, III, pla~tic flow 11,li,.t lie.)]) inode tlirlisl is assnimited to reniain constant until1

motim "t Iops, as it is if ci n si e rub] v g~reater eltergy thiant the flex ural miodes-. In t lie ela stii
case" i, 1i ran 4eor of energy tieed, toi be cotiside red and coupling termii bet ween tie fitn danier tal

hoop nb andi flexural titodes have to be nita taiil In the sollutionl



2.2.1 Derivation of the Equation of Motion

The equation of motion in section 2.1 for plastic flow% lu ckling N as derived on quililbrilu
principles. For elastic pulse buckling, energy formulation> and Laorange'squ liion ;r,, used to
derive the equalion of motion 1].

The radial and tangential shell displacements with initial imperfections, are exprssed a,:

W(Qt) = W.tJt)+ U.,(0)
T(Ott) = r(O.t) + r1 (0) (32

where 'j and I,, are initial imperfections and u' and r are the radial and tang .ntia! displacemlt s
measured from the inuitial u,. I-, state.

The kinetic energy per unit length of shell is given by:

I = 1/,1 i(,) 47 (I. (3

Reference .- uses the dimensionless quantities:

Lt ul' 1' t', ci
- Ic, -- " - ' 1 u1( -- (31
( C a (1 a

11ire C L and E: = togiv, equation (33) as:

- ; 2- all (. &. (-- )-Jd .r .-T , L'i h a [( Or) - ) -'!37,

The strai, energy of the shell is defined as:

2 o h/'2

where th hoop st ress is giv\en by L,,(.
The total circumferential strain. (. is the sum of the middle surface hoop strain. ,. and

the flexural strain from the change in curvature a distance, z. from the middle plane:

( =(,i + :N (37)

which when suiibtiluted into equation (36) gives the strnn energy as:
1 2 "] O ,

l" = Itfjt/ [1 + a2 o2 ..2 ]dO (:1'
"2



w%-here --- and K. the curvature. is defined by equation (2) and derived in .Appendi, A.
Equation (3S) :s noilinlear and tv'Liis up to Itii order are required to T;ilitaili the required

coupling of hoop and flexural modes [41].
The midsurface hoop strain is defined by a change in lelglth of a circumf,,rctial elereni

from ado to rdO given by:
1 \ Or 0c

-[' ai(o-: + r 2 (-0) 2 1 i3
+ r2( (39)

which, when put in dimensionless form. and using the relations u = a - r an(] c o- 9. gives.

after reduction [41:

do09 2 06
Including initial imperfections in the midsurface strain gives: (In (,7 - "In which after sim-
plification becomes:

ac 0. _ 1 Ou OU OIL, Oc O',- U - - + "-- -- - - '141
00 00 2 09 09 do d

Substituting equations (2) and (-11) into equation (3N ) gives the strain energy a-:

1 OL." Oi' Oa t" Oal. Ou O,

-- 2 u }+( -7 -t - " + o( (T21
,9 0 06 2 d9 09-

with shape imperfections and .th order ternis maintained. The displacements are now expressed
as Fourier series:

U(7, 0) ao(r) + --[a,(r)cos nO + b,(r)sin o0]
n=1

7, [c(-)osnO + d, 7-)sin nO] -3i
n=l

Shell i next ensibilI ty is assumed, which gives: c. = -bln and d,, a,/7n. Imperfections are
taken in tie form [-4l:

9 . , >-3[, cos 9O+ , six, 91] ItI E(0 CO no ,,=2il 0 1

to give tli energy expre.siols:

O e )2 2 712 1 Oa,, ))1
T= rI'J'Ia1(-,- + >3_. _ ). +(,)2 (.
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and:

: = irEiha[ao + ) [ 1)22 (n" - 2)ao](a., -- bT)
n=2

21 8(n 3 n2 + 4)(a - b)- - 2)(b'an + % ba)a.] (16)
n=2 n=2

To obtain the equation of motion, equations (45) and (46) are substituted into the Lagrange
equation:

d OT (VT 0(

dt Oi) Ox7 ± a
to give:

d(0 + ao - -(1? - 2)a2 = 0. for the generalized coordinate. x, = ao (48)
4n

and

dn + (u, - fnao)a, + ga = v'-Thof -7 ao. for. x, a, (49,
8

where w2 n 2 (,22-J) 2CY n = 2) 1-1 j,2+4w n2 +1 f n g= -= ,2 (n 2 2) . and the nondimensional imperfection

is ,= The b, terms have been omitted since solution will concern only a few specific
amplified harmonics and the: phasing of sex era] harmonic components will not greatly affect the
solution.

2.2.2 Impulse Velocities for Vibration and No Buckling

For velocities which do not cause the shell to buckle in the first phase of the hoop mode.
the shell will vibrate with energy interchanging between the hoop andi flexural modes. At early
motion. most of the energy wii be in the hoop mode and the a2 term can be neglected ill
equation (.1) to give solution:

a0 sillr (50)

for in initial xisyinrnetric radial velocity of I0.
Substituting equation (50) into equation (49) and redefining parameters in the Mathieu

equation format [31 , gives:

6i, + (Q,, - Pj, sin -)a, = /12aT, sin 7 51)

where the .Mathieu stability parameters are defined as [4':

2 , 12(n2- 12 (52)
1(7,241)

17
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Figure 5: Mathieu Stability Diagram (from reference [101)

and:

7,/.o _\ \).o

Mn-fV 2(2 -=)V (53)
c (n2 + 1)C

The format of the Mathieu equation, (51), is given in a simpler homogeneous form in refer-
ence [10, where initial imperfections and fourth order terms are omitted in the strain energy
expression since only small velocities are considered.

A curve of 0!, versus p,, both of which are functions of the shell parameter, a, the initial
velocity, "'Cj and the circumferential wave number, n, can be plotted on the Mathieu stability
diagram. This is shown in Figure 5. The derivation of the stability regions (shaded areas) on
the Mathieu diagram is a very difficult process and is discussed further in Appendix B and
reference 14.

It can be seen in Figure 5 that for this case of small initial velocity, the curve passes mainly
through regions of stability with the exception of the nl, = 1/4 abscissa which is unstable for
an), j,, (with no damping). Setting i'l, = 1/4 in equation (52) gives an approximation for the

18
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Figure 6: Response Showing Transfer of Energy From Hoop to Flexural Modes (from reference
[4])

critical mode as [10]:
a (4ne, = 1.316 (54)

assuming n, >> 1. This also gives the critical frequency of w,, equal to one half of the hoop
mode frequency necessary to have 'autoparametric' instability. Using the relationship n, > > 1,
the Mathieu equation (51) can be rewritten in the form [41:

a, -- p2A 2 ( A' - sin r)a, = p2 A2 Vr/12&F, sin r (55)

with p A and s2 = P- from which p can be used as a 'stability' parameter in that it
contains the necessary parameters, a and V0, to establish instability from the Mathieu diagram.

The motion of the shell is determined by including the a2 term in the equation of motion,
(48), to allow for coupling between the hoop and flexural modes. Reference [41 omits the a3

term in equation (49) and attains a solution to the shell motion by numerical integration. The
results are reproduced in Figure 6. It can be seen that energy is almost completely transferred
between the hoop and flexural modes.

A third curve in Figure 6 is that of the peak outer fiber strain. This is the structurally
important aspect of the autoparametric behaviour for small initial velocities where permanent
buckling does not occur. It can be seen that the peak strain occuring during the flexural
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mode is considerably greater than that during the hoop mode. An analysis riot considering t his
autoparametric effect would not detect this amplification and would unoderestinnate the peak
stress under an impulsive load.

To estimate the stress amplification from flexural vibrations, the peak hoop and flexural
stresses can be derived assuming that there is complete energy transfer uniquely to both modes
from the initial kinetic energy. The initial kinetic energy can be determined from equation (33)
for an initial velocity. V0o, as:

T = rpha 20 (56)

The strain energy of the shell, assuming that it is entirely in the hoop mode. is deterinii ed
from equation (46) as:

UH = 7rElhaa 0 (57)

The strain energy assuming that it is entirely in the flexural mode. n, is also determined from
equation (46) with the additional assumptions that nc, >> I and that -4th order terms ar,
negligible, as:

1, 4 2 2
Uf = 2 r-Elhancro a n

Equating equation (56) with equations (57) and (58) and using equation (52) with Q,, = 1/4
to establish the critical mode, gives an approximation of maximnimii amplitudes of vibration as:

00 = L and a - V = (59)
c C

for the hoop and flexaral modes, rcspectively. This means that the flexural mode amplitude is
2.83 times the hoop mode amplitude.

To compare stress amplitudes, the maximum hoop strain of u/a = ao = 'o/c gives the
maximum hoop stress as:

-nH E=- (60)
C

The flexural strain is defined from equation (37) for the curvature as:

= / 1 02 ZI h 712 2 = 3 ,7 2 (61)

which after substitution of equation (59) and equation (52) for '.. = 1/-I gives the naximunt
stress in the flexural mode as:

(T f= j v1-0El V6-(71 (62)

which swans that the stress in the autoparanetrica!ly excited flexuial mode is 2.15 times tiat
of th, hoop mode.

20



Goodier and Mclvor [10] numerically integrated the Mathieu equation of motion, equa-
tion (55), for several a/h values and present graphical results which illustrate the energy trans-
fer between hoop and flexural modes. The a/h values used are much lower than those for which
elastic dynamic buckling could occur.

The previous determination of autoparametric response, and of stress amplification factors.

has been for initial velocities such that the a3 term could be neglected from equation (49) for

the flexural terms of motion. Lindberg and Florence [4] show that for values of the stability
parameter, p > 1/2, this leads to unbounded growth of displacement terms. The motion for

velocities resulting in p > 1/2, can be determined by numerical integration of the equations of
motion, (48) and (49). The effect of damping can also be considered by including .3, the critical

damping parameter, to give the equations of motion as:

a.- 23do + ao - 1!(11 2 - 2)a 2 + 23do (63

and

d'n + 23wua', + (u,'7 - fnao)a, + -inf ,g,' = V12of,-ao (64)

From results of numerical integration, it was found that the critical mode number was a function
of p (ie. initial velocity for constant shell parameters). An empirical fit to results of the

numerical integration gave a formula for the critical mode as [41:
4

714 r - + (0.6) 4s 4  (65)
4p2

.vhere. from equation (55), s2

From results of the numerical integration, motions for two different values of p are shown

in Figure 7. It can be seen that energy transfer to the flexural mode is complete closer to the
first inward hoop motion as p increases.

To derive an expression for stress amplification similar to equation (62) for the small initial
velocity case. the total energy of the system including the 4th order. a' terms, is used [4]:

[ha , + 4 2 ao)a- + -n a = 2p 2  (66)
7r Elha 02~i~2~( v na 162 n I

In determining the maximum flexural stress, it is also necessary lo consider the coincident

energy in the hoop mode, arising from the coupling term, (na 2 
- n20)2a . in equation (66).

To determine the maximum ainplilide of ao at the point of niaviniui an. the velocities, da

and a', are set to zero and a' is maximized with respect to a0 . The upper bound to the stress

amplification is given as:

A,_ + ( where. A,= 2, - 4,/ +_ 2 (67)
(711 12,\2
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Figure 7: Elastic Motion for Various Stability Parameters, p (from reference [4])

which is shown to have values in the range of 2.5. Results from numerical integration gave
stress amplification values in the order of 1.65 for p > 1.5 indicating that the upper bound of
equation (67) may be too high [4].

2.2.3 Pulse Buckling from Large Initial Velocities

For larger initial velocities, V0, in relation to the shell parameter, CK, (ie. large p), the
shell will buckle during the first compressive hoop mode. For large values of p, the curves of
0 versus p on the Mathieu diagram (Figure 8) do not pass primarily through stable regions
as was the case for smaller p values, as was shown in Figure 5. As was the case in plastic
flow buckling, many modes are amplified, with one mode being dominant. In considering the
Nathieu equation, (55), it is clear that the coefficient of a, must be negative for unbounded
growth. Following the approach of plastic flow buckling, the largest n for which unbounded
growth may occur can be estimated by taking sin r = 1 in equation (55), to give:

A,<l ma - Vo (68)

Reference [13] rewrites the Mathieu equation, (55), without initial shape imperfections as:

d - p 2 A2 (sinr - A2 )ax = 0 (69)
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Figure 8: Mathieu Stability Diagram for Large Initial Velocities Causing Buckling (from refer-
ence P134)

with initial conditions:
d. (0) = V ( = 0 (70)

where~ -y. are harmonic perturbations of the initial velocity field, V0. The investigation of modal
growth can be accomplished by numerical integration of equation (69) with variations in the
parameters A\ and p. Figure 9 shows the mode amplifications with time of an aluminum cylinder
of a,/h=480 and V0 = 80Oin/sec [13]. It should be noted that buckling occurs for the elastic
case at very high wave numbers, in the range of n =45 to 65.

For co~mplete analysis of the motion of the elastic shells, equations (48) and (49) need to
be numerically integrated with the initial conditions of equations (70). An empirical fit to
results obtained in this manner gives a relation for the amplitude of the most amplified mode
in relation to the initial imperfection as a function of the parameter, p, as 1

:(71)

The mode of maximum amplification can be estimated by solving equation (69) for a con-
stant hoop thrust case (ie. letting sin r = 1). This is the same assumption as is made in
plastic flow buckling, where the time dependent coupling between hoop and fiexural modes is
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Figure 9: Modal Amplification for Elastic Dynamic Buckling of Thin Walled Cylinder (from
reference [13])

neglected. This gives [13]:

aA(r) = Osn , where F, = pAV1 - (72)

/ \n

from which the maximum amplified mode can be determined by minimizing equation (72) with
respect to A to give:

1 T -73)

To establish whether elastic, dynamic buckling will occur for a given velocity pulse on a
given shell, it is necessary to determine if either hoop or flexural yielding occur and which will
occur first. Elastic. dynamic buckling is signified if flexural yield is reached first, otherwise the
shell will enter the plastic flow hoop mode where dynamnic buckling will occur as plastic flow
buickling influenced by the elastic mode. Using equation (61) for fiexural strain and equation( 71)
for maximum amplitude, the flexural strain can be expressed as:

oo= VA2P( .2F) /I (7 )
a

Setting expression (74) equal to the yield strain (y gives a relation between p and h/a. A similar
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Figure 10: Hoop and k lexural Yield and Dynamic Buckling Limits for Elastic Response to
Pulse Loads (from reference [4])

expression for the hoop strain can be attained by setting:

Vo _ ph ()c 71:22--a = (5

Using the value of A,, = 0.6, from results of numerical integration of equation (69), Lindberg
and Florence r41 present a curve, Figure 10, for different imperfection values, 6,, giving hoop
and flexural yield limits as functions of p and ci. For practical values of initial imperfection
of 1 percent of the shell thickness (6 = .01) and cy = .004, it can be seen that purely elastic,
dynamic buckling will not occur for shells below a/h=260. The stability parameter, p, must also
be greater than 3.66 for buckling to occur, otherwise only autoparametric vibrations will occur.
These parameters represent a very thin shell, thinner than would be used in most submarine
applications.

The topic of autoparametric, dynamic, elastic buckling has been addressed subsequent to
reference [101 by other authors. Hubka [1), derives an analytical sulution to the coupled non-
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linear itiiferetial equations of motion for response to small initial velocities. Thle solution
agrees with the numerical results of reference [10 showing a slowly varyintg hoop mod,, function
modulating a rapidly varying flexural mode.

The Mathieu type instability describes response for periodic type loading, and many ref-
erences examine this [15,16,17]. This is not pursued further here as response to single pulse
loading is of primary interest.
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2.3 Elastic and Plastic Pulse Buckling

This section presents all analytical investigation [11] which includ,s both the plastic and
elastic regimes in a sing!e theory. The theory r,'duces to the plastic flow or elastic theories
discussed in the previous two sect ions for limiting cases. The necessity of conibinirg both elastic
and plastic behaviour for a wide range of a/h ratios is demonstrated. Although equations of
motion are produced. a general solution to the elastic-plastic case is not formulated.

The problem considered here is again for a ring or infinite shell subject to a perturbed,
nearly uniform, axisvrinmetric velocity pulse. The linearized equation of motion, derived from
equilibrium of a shell segment (see equation 7) is. with the additional assumption that u is
much less than 1:

uIV + (1+ oE 4- + -"3 -0 (76)
a23 )U+ o232 (2,32

where 3' = Eh and ,". is the spatial derivitive with respect to 0. The parameter 3. in this form

of the equation of motion, can be used for the elastic as well as the plastic flow case. Fo" purely
linear, elastic response, 3 = 1 and a/E = E. Reference 1 11] considers only material of bilinear
stress-strain curves represented by:

cr,/ = , 2 1, for0<K(<(
cr /E (1 3.2  , ._2 E , _

a/E = (-. 3 2) + 3 .3 = --. for , < (77)

Equation (76) is then divided into two regimes, onc for elastic strain:

u" I1 - --) +-- -! -+ +O0 forO< < < (7.,)
Q20 2

and one for plastic strain:

II -(l 1 - 32 1 2 
C

I2L" + 11 - 5 + -2  "' =2 ' - . for % _ 9
32 o 2  o2k ±0 32 o'

Tlie initial conditloi.,, as in the plastic and elastic cases. incorporate imperfect ins iM t he initial
displacemont and velocity fields, defined by the series:

S ( sin,( Sl n - b,,o cos 11O)

= + (anjsinn + b,, cosn 0)1 (S
n=l

whero an, are of port iri-at ion order ( < < 1).
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The solution follows that of the previous cases, with a particular, unperturbed solw iol arid
a perturbed, complimentary solution yielding buckling term.,.

Solving equations (78) and (79) for perfectly radial niotion (no dependence on 0). .vields tlie
particular solutions:

l -slnT. for - u < (1)
c C

and:
1 - .32 (D/C 3 / -fr

3 -i+\ 3( + ( 7+si-(3( 2r

where y0 arcsin cot = ( )2 - 1 and the constants of integraltion were deried

from the initial conditions:
10.

-( o - sin reO = . a n (. .l (0 - c o s ( ( ,8 3 ,
C C

If the iritiaI velocity is great enough to cauise I' 0c > c . then the radial hoop motion ceases at
time:

-/2 -(.7f = -,0 4-(g)J

The complimentary solutions are obtained by solving equations (7h) and (79) subject to
initial conditions (SO). The flexura] motion of the shell is assumed to be inextensional. allowing

-9. and the complete solution to be taken as u(g, r) 7() u (O. r). Equations 78 ant

(79). reduce to the variational equations of the perturbation of Ti:

-4- + -)U = 0 for 0 < z <(

an (!

II [(1+ )40 orY<T
02 O2. j 2

for wliich solutions of the form:

, 7e=[[a,,'- b7 (87
c

ar, a+t . 1 ed
Substit itiol of equation (87) into equations (8.5) and (S6) produces the homogenc -n s form

(of tfhe MIathiiei difrereritial equation.(51 .of the olalic theory (section 2.2 ). if n<< I:

./,; ± (12(74 - 71 - 1Si1t ). 0, for 0 < I <
(i2



and of the plastic regime:

n+4 - /c 1-32 % )2sin[3(r- r 0 )+;]}g,, 0. for ,, < T1 9

the latter of which reduces to :

-o 
2 [n0 - , - 0. for 90)

Equation (90) is similar to equation (19) of the plastic flow theory (section 2.1 . Equation ,9i
reduces to equation (Y,) for elastic motion where 3=1.

Both equation (88) for the elastic case and equation (89) for the plastic flow case. are
of the Mathieu instability type. Values of the parameters n. o2.1o . C and J can be found
which fall within the unstable regions of the Mathieu diagram. If the hoop niode response
remains completely elastic (ie. Ib ' c. ), then the mode of buckling will be establilhed solely
by" equation (SS) as was given in ;ection 2.2 from Lindberg and Florence [4. If Ib > c(.
then the hoop mode enters the plastic material regime and the buckling mode shape will be
some combination of the two predominant harmonics determined from the elastic and plastic
solutions. If VO >> c _, then the response will be governed by the predominant mode of the
plastic flow regime as was the case in section 2.1.

To obtain the predominant harmonics of equations (8S) and (89). these Mathieu equations
must be solved. This is of extreme analytical complexity !1-1). Stulver III]. produces an ap-
proximate solution resulting in:

(1 - 4 T j (91)

for iho elastic regime, where A.p and s are defined in equation (.55) and:

0.85v61 i (11 + /)21M (92!

for th, pla.stic regime. For p > 2. A,, is equal to 0.595 which is in good agreement with the
valle of Ajz = 0.6 obtained through numerical integration [4]. Equation (92). for the plastic
flow wave number. n;,. gives comparMble values to equation (24) of t lie plastic flow case derived
by Abrahamson and (oodier [d.

('omparison of resultant buckled wave numbers from tests on cylinders with 9 < aih < 36
show that the experimental values lie between the nf, and 11. values of equations (91) and (921
with no particularly good agreement with either value. Stuivor postulates that this is a result
of both the elastic and plastic modes influencing the response.
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A complete solution to the nonlinear dlifferential equations describing the radial nto
would be very compllex ahld WOnM b( e better left to approxinmat e ni men cal ini 1 hod . ,,uch

finite difFerence or finite element.
One such st ud., using a cnairtic elastic-plastic. geometrically nonlinrca r fiite di feren cC-

code for rings, is presentedl by \\esenberg [V1] Three cylindrical shells of a li=100. 200 and]
300 wero subjected to axis vinmnetrnc i .ipilse loads, and response was mieasuired by high spoed

photography'. Initial imiperfect ionls we> niasi red for the predomntanit re! u It ant itiode and
inco:Iporated in the finite difference solion. The radial velocity pert urbationsi. were nieasuredl

from the photographs and] used as the velocity perturbation prameters in the fiite differencre
solution. The numerical solution allowed t lie shells to buckle, deform plastica iv and damip owi
to a fiital deformed shape. The permanent peak deformations for a range of imnpulse loads wecre
in good agreement with the finite difference predictions. The wave number of predominant
response was shown to increase linearly* with the nmagnit ude of tho applied i nipulse. All three
shells buckled in wave numbers raningii. from 30 < n < 3.5; however. the soluion does require
imperfection -nd p~erturbation input from the buckled shell which one would normially not know
apriori.

1Using equations (91) and (92) for the experimntal aluminumn shell des;cribed in reference

11. with parameters: h=0.02 in, a=2.0 in. E=10-,000,000 Psi, Eh=130,000 psi. oa(0.2 9 -c)=-14.000
psi. p =0.27 x 10-3 lbSrC2

1 1 111 c=200.000 in/sec and 10=805 in/sec. gives 7z~ = 13 and
li, 121. This shell buckled experinmentally at n =30 [18]. This indicates that the actual

response is somewhere in between the cases of purely elastic and purely plastic response for a
sbell of a/hl= 100. The plastic theory greatly- overestimates the mode of fundazmental response.
Since both n,1 and np are linear function,; of a/h. for the same velocity irnpu.' e, the shell wvith
a/h=200 will have nrj 26 and n,,, 242 as predictions and the a1 'h=300 shell will havc.e

n = 3D and ri = 363 a predictions. For these thinner shells, which buckled experimentali'v
at ri=3.) and u=33, respectivelY, the elastic prediction is in reasonable agreemeont. This could
be expected as these shIh,11s ir(, in the ranige of thle elastic limnit of a/li>260 reported by Lind berg
and, Floretire [4]-.



2.4 Pulse Buckling for Finite Length Cylinders

The theories presented in the previous sections of this chapter have dea:, v'ilh rings or"

long shells for which plane strain conditions have been assumed. This section disc Isses theory
for the dyvnamic buckling of axisymmetrically loaded shells of finite length where biaxial stress

states and end conditions have been included. First, the extension of the plastic flow buckling

case to include a biaxial stress state will be discussed. Then. the elastic dynainic bickling case
is considered for finite length cylinders with simply supported end conditions. Elastic dynamic

buckling, particularly if the loading function is of longer duration than a pur,_, impulse. may

occur at circumferential wave numbers of small enough value that end conditions affect the

response of the entire shell [19].

2.4.1 Plastic Flow Buckling of Finite Length Cylinders

As was the case in section 2.1 for rings or long cylinders. the theory drived for finite
length cylinders is for the specific case of a perturbed. axisymnetric, velocity pulse on an
imperfect cylinder. The theory is most applicable to thick shells (a/h < 40). where the hoop

membrane strain will undergo significant plastic deformation before buckling occurs and elastic
behaviour can be neglected. The assumption of no occurrence of strain rate reversal is also

made and a linear strain hardening modulus is used as the constitutive relationship. Florence
and Vaughan [20". first developed the theory for short shells with a plane stress assumption.
and then extended it to consider shell- of variable length to the limit of the infinite length.
plane stiain case [21J. The solutions are for the unbounded ampl.fication with time, of the
predominant circumferential buckling mode.

Due to the biaxial stress state, an additional resistinig moment to the st rain-hardening
moment derived in section 2.1 exists. Material incompressibility is assumed giving the condition
(in terms of strain rates):

+ l + ..0

where i.. The gencralized strain rate and stress are defined by '9 0 .. 2'

2 .2 * *2 (9-1

3

a 2 '2 (2

)(o,. + (TO + cr ) (95)

where T' are tie deviatoric stross components. With the assumption of T: 0 ,stress through

the shell thickness). and using the Levy-Mises flow law [22]. ii/a' ). where A\ = 3i/2a. from
equations (91) and (95). tlie stress components become:

2a .2a.
-17. = 2(7 2< + (0), and. (rp = 2-( -+ 2('9) (96)
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and for a linear strain hardening assumption, a =Ei. whichi allows:

Ca = a + L (97)

where a is the yield stress.
For unperturbed, radial, hoop motion, the circumferential strain rate i':

= -(1 - Zia)( a'/) (91i

where z is measured from the shell midsurface and mbo is the radial hoop motion.
With the assumption of plane stress. 0-7 = , = 0. and ( = i- = -i/2 from equation (96).

at the midsurface. equation (98) gives iz = o,/2a. The strain rates at any point z. in the
shell are defined as:

i, = zim'o/2a. = -(1 - z/a )(i'o/a). and. = -(1/2 - z/a)(1&o a) (99)

which, when substituted into equation (9.1). with (z/a) ternis of order two or more neglected.
gives the generalized strain rate:

= -(1 - z/a)( t'o/a) (100)

and the stress relations:

c7, = (2z/3a)VT and o= -(1 - z/a)a7 (101)

where the generalized stress is now defined as:

a7 = U9 + Eh(I - S/a)(u-,/a (102)

Reference, 720] defines 7r0 as the current midsurfacn stre.:

a (7y -- L ('0,/ (1 (103)

allowing the stress components to be defined as:

a- = (2z/3a)ar0 and a76 = -a
0 + (z/3a)(a,., + 4Ehu'o/a) (104)

agaii with :/a terms of order two or greater neglected.
The moments and membrane forces for a shell segment. determined using equation (10.4

are:

,1, J ,:dz = (h/l/8a)a ° (0105

32



h/2

190= 1-h/2 ozdz = (h 3 /36a)(a 0 + 3Ehwo/a) (106)

= h/2 f42

N= h/2 adz = 0 and No h/2 codz = -ach (107)
J-h/2 J -h/2

The equation of motion for the unperturbed state, from Figure 2 and equation (7), is:

No = apha (108)0Ot2

which becomes:
0 2  

W O 
) W

&2 + (ch/a)2w° =- /, (109)

upon substitution of equations (107) and (103) and defining c2 = Ehip. For initial velocity
pulse conditions, wo(0) = 0 and tbo(0) = Vo, the particular solution for this problem is:

wo(t) = Vo(a/ch)sin(cht/a) - (aua/Eh)[1 - cos(cht/a)] (110)

The perturbed solution is defined as w(O,t) with the total solution being wo(t) + w(O,t).
The curvature, from equation (8), is defined as:

1 (Wo + w) 10 2W
+ - + a2  + (111)a a2 a2 02

giving the perturbed motion strain rate components as:

£6 = -(1 - z/a)(wO 
+  W). + Za 02 -L

a 2 a02

S(wo + w)

2a

i, (1/2- z/a)( WO +_W). + Z &2__a (112)a a2 002

The generalized strain rate ,from equation (94), becomes:

( WO ) _ ( +w+ -) (113)

with orders of z/a greater than one and perturbation products neglected. Equation (113) is
integrated to give the generalized strain:

=- + W -Z[w + (w - w) + ]'1 (114)
a a a a'
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where wi is defined in reference [20] as the initial deformed shape, wi = w(0, 0). The generalized
stress is then given as:

a a+ Eh Ehz+ 0(w - wj)(

S- W) - -2WO + (w-w)+ (11.5)

Equations (96),(112) and (115) and a binomial expansion of ecuation (113), give stress compo-
nents:

= 2z[a0( + 1 2 W)+Eh( (116)az - a b 2) - _a  7 - wi)](16
a= _[a+Eiiw w z 1O0w E2 a

a oaare
° (1±.do 2 )= a (3wo + 4(w - wj) + 3 2(  W,)

with resultant moments and membrane forces:
h3V-0 b--o 01w0._ W Eh (W

foa(1 + L _ Wi) (117)
18a W(92 a

M= -- [a°(1+--- + (3w +4( - wi) + 3 (118)
36a WO ao02 aa2

N = 0 and No = -h[a ° + Eh (w - wi)] (119)

a

The second term of Mo in equation (118) is the resisting moment from strain hardening, Eh,
wlich governed the theory of section 2.1 for infinite shells. The first term of M0 , -- 3aa°(1 +

T aw), is an additional resisting moment arising from the different locations of points, z,
through the shell thickness on the yield ellipse (Figure 11), which is defined by the equation:

or- 2 a-Oa0o + o' -= a' (120)

The strain rate vectors at the outer, mid and inner surfaces are of different magnitudes on
the yield surface giving rise to a strain differential through the shell thickness and thus a
resisting moment. This moment has been termed the 'directional moment' in reference [20]
and is dependent on a biaxial stress state. The second term of Mo is referred to as the 'strain
hardening' moment and depends on the existence of Eh.

The equation of motion is found by substituting the curvature and force-moment expressions,
equations (111) and (117) to (119) into equation (7), giving:

1 92 Mo 1 (wo + w) 1 a2w a2(w+w)

a 2  80 2  [ a 2  + a2 2- ] +  ph &t -0 (121)
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0'0

Figure 11: Strain Vectors on Yield Ellipse (from reference [20])

Simplifying assumptions are introduced by Lindberg and Vaughan [20]; the hoop thrust is made
constant with time: No = -ao0 h, the (wo + w)/a 2 term in the curvature is neglected, and the
4(w - wi) term in Mo (equation (118)) is neglected. This yields equation (121) as:

S1 2W Eh4 2(w - W) o 0
2w 82 w

36- 0( +1 2- )3 - + -  = 0 (122)
36aha 8902 a 8 a 2 00 2  &

where the four terms represent, respectively, the directional moment, the strain hardening mo-
ment, the hoop thrust and the inertia. With the introduction of the dimensionless parameters:
u = w/a,ui = wi/a,uo = wo/a,r = Vot/2a,TJ = pV/2a ,, a 2 = h2 /12a 2 and 3 = Ehla,

equation (122) becomes:

a2 i2I 82u 31 p2(u - u,) i_2u r8 82u
+ 92 o] 2 -+ -g- =o 0 (123)

which is similar to equation (41) of the plane strain plastic flow buckling case except that the
'directional moment' term has been added and u has been neglected with respect to 1.

The equation of motion for the unperturbed motion, equation (108), is given, from the
simplifying assumptions, as a, = -api!0, which, when put in nondimensional form gives: uo =
-2/r 1 . Initial conditions,w0 = 0 and tbo = Vo yield uo = 0 and iio = 2. Integration of iio with

the initial conditions yields the dimensionless hoop velocity:

io(r) = 2(1 - T/Tf) (124)
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and the dimensionless hoop displacement:

uo(r) = 2(r - r 2 /27f). (125)

The time at which motion ceases (ito = 0), is irf and the midsurface hoop strain at this time
is wo/a = no(fr) = rf. Reference [201 introduces a further parameter, = 1 - r/rf, s-" - *+at

the period of motion is now defined in the interval 0 < < 1. The equation of motion is now
expressed as: 19 9 2 1 &3U 02

02u U 2 1 2 rf/ -(u - u,)] = 0. (126)
0 + 29-02 3 0 0

The perturbations of the fundamental motion are expressed in sine series as:
00

u(O,E) = u.( ) sin nO (127)
1

with initial shape:

u,(O, 1) = Z sin nO (128)
1

and initial velocity perturbations:

V = V(1+_bnsinnO) (129)

yielding the Bessel type differential equation:

ii -Un - Rnun =Snan (130)

subject to initial conditions:

u,(1) = a,, and it,(1) = -2rfbn (131)

where:
2 n 4 22 1 _ a )aQn - , Rn = 2ryn2 (1 - a21n 2 ), and sn = 27fa 2 on 4  (132)

3'

The solution of equation (130) takes the form of Bessel functions and is [20], for R' > 0:

Un() = An( )an + Bn( )bn (133)

where:

An( ) = 2Tf v[I,,(Rn)Kv.-I(Rn) + K,(R,0Iv-I(R,)](R, + S,/Rn) - S,/Rn

B,( ) = 2Tf v[-I(Rn)K,,(Rn) + K,,(R,,)I,(Rn)] (134)
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Figure 12: Displacement and Velocity Amplifications as a Function of Harmonic Number for A
Short Cylinder (from reference [20])

where I, and K, are modified Bessel functions of the first and second kind of order v =

The restriction RI > 0 defines the range of harmonics, n, which will grow unbounded, as
n2 < 1/a 2 6. For R2 < 0, the solution is in terms of J, and Y, unmodified Bessel functions
which do not become unstable. This is similar to the plane strain case where hyperbolic
functions represent the unbounded range of n, and circular functions, the bounded n. The
An( ) and B,( ) functions represent amplifications of the shape and velocity imperfections,
respectively. Equation (130) may also be evaluated numerically. The amplification functions
An( ) and Bn( ) resulting from numerical integration, are shown in Figure 12. These are similar
in form to Figures 3 and 4. The exact values of the amplified parameters are dependent on the
initial shape and velocity imperfections. Although the displacement amplification functions are
greater than the velocity amplifications, the two terms may be comparable for realistic initial
imperfections. An approximate formula for the critical mode is given in reference [20]:

ncr = (72)1/4 V (135)

Reference [21] carries the theory for short shells to shells of variable length by introducing
the parameter, k, into the strain rate relation, such that:

i. = -kee for 0 < k < 1/2 (136)
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Figure 13: Yield Ellipse for Variable Lcigth Shells (from reference [21])

where k=1/2 for the plane stress, short shell case just described, and k=O for the infinite shell,
plane strain case. Figure 13 shows the yield ellipse of the midsurface strains for varying shell
length. The shaded region is entirely in a state of biaxial compression with the short shell case
(k=1/2), corresponding to a. = 0. The stress state is expressed in terms of k as:

a, = 1 - 2k

-o 2-k (137)
The value of k varies along the length of the shell, being near zero at the middle of a long shell
and near one half at the ends of the shell. An approximate formulae for k as a function of
length is given [4], as:

k(x) = cosh(2qL) for - L/2 < x <L/2 (138)

where L is the cylinder length, D is the diameter and:

Qt2 = (2 - k)K1(19

[K, - (1 - 2k)2 ]

The theory for the variable length shells follows that of the short shells, but includes addi-
tional T)arameters as a result of:

i., = ktbo/a (140)
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which are defined as:

K, = 2(1 - k + k2 ), K 2 = 3K1/2, and, K 3 = (2- k)/IK (141)

Only the key equations, with the Ki parameters, will be repeated here . The solution of the
unperturbed radial motion is delined by equation (110) which now becomes:

WO V0  3a_
a- = - sin(Acht/a) - ' [I - cos(Achi/a)] (142)

Ac -h 2K 2Eh

where A2 = 2(2- k). This solution is reduced to that of equation (125) for a constant midsurface
stress, am, giving:

W = r(2 - r/rf) (143)
a

with r1 now defined as:

=f P 0'IK' 4)
2am(2 - k)"

am is taken as the average stress in the post yield region as was used in section 2.1. This is
different than the short sell" thc-ry which uses a., which is the yield stress (ie.a, > au).

The resultant moments and forces for the perturbed motion, equations (117 to 119), become:

hV 3kamK 3  1 a2. Eh 02( w))]

12a (2 k) 2 (l+ 3a 02

h 3 ) + 2(2 - k) (wo + 0 2(W w))] (146)
12a (2 - k)K 2

( ± 2 E w,))] (146)

N. - (2k - 1) and No = --h(-2 + k) (147)
K2 K2

where, again, Mo consists of a 'directional moment' resulting from a strain differential on the
yield surface through the shell thickness and a 'hardening moment' resulting from an Eh of
positive slope creating a strain differential through the shell thickness.

The above force, moment and curvature relations are substituted into the equation of motion
(equation 121), resulting in the nondimensional equation of motion:

a 2 u 02u 2 a2 3k 2K 3  0'3 u 2(2 - k)-li3.0 02 ui
+ 2 - 2 -f(-k- 2 fot09 2 a k ( - 092 )] = 0 (148)

09r2 902 902(2 k) 0002 K 2  029 0

where the nondimensional quantities are defined in equation (123) except that a, replaces
C and r is defined by equation (144). Using the same displacement perturbations (equa-
tion 127), initial distortion (equation 128), velocity imperfections (equation 129), and initial
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conditions (equation 131), the same Bessel type differential equation as equation (130) results.
The coefficients are now redefined in terms of k as:

3o 2 n4k2K 3  a'2  3n2 .

Q2 R 2r7fn 2 [1 -(2 -k) -- 2 J, and, S, = 2rfn2 - R2 (149)
(2-k)2 ' n  K n

with solution defined by equations (133) and (134). The amplification functions A,(f) aiid

Bn( ) behave as in Figure 12.
Both references [21] and [20] develop simplified expressions for the amplification functions

by approximating their final values at - 0. In considering the modified Bessel functions at
their limits, it can be shown that:

Lt .-.oVIv(Rn) = 0 and Lt_.,o 'Kv(Rn ) = 2v-lr(v) (150)

where F(v) is the Gamma function, and for Rn >> v, it can be shown that:

I,(Rn) 
(151)

which result in approximations for An and Bn at = 0 of:

r( V)eR nr :n ' rF(v)e R,,7f
An (0) --- and B, (0) r--enr (1,52)

4(r)i2Rn/2),v+3/2 a ( 2(r)/ 2 (R,/2)v+1/ 2 .

For k approaching a value of zero for the long shell, plaue -train case. Q,= 0, R 2 
-

- 2 7i), and Sn = 47f 22 and the solution of equation (130) now is in the form of
hyperbolic amplification functions:

An( ) = (2rfn 2/R 2 ) cosh Rn(1 - Sn/R (153)

and:
Bn( ) = (2rf/Rn) sinhRn(1 - ) (154)

which for terminal motion ( = 0), are approximated by:

An(0) 2t reRnn2 /R 2 and Bn(0) - r e n/R. (155)

Differentiating either of equations (155), with respect to n to obtain its maximum value yields:

- 13 (156)
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with amplifications:
A,,,(0) = e Rn and B,,,(O) =7jcR"/R, (157)

where R, = -fn = -, and rf, the final circumferential strain is:

1
7f v = (158)

For k approaching a value of 1/2 for the short shell, plane stress case, the strain hardening
moment becomes negligible, giving S, - 0 and R 2_ 27fn 2 . The maximum harmonic, ncr,
is determined from maximizing equation (152) with respect to n. Reference [4] presents the
equation for n, resulting from a graph of Qn vs Rn as:

3 c 2 r (2 - k)K (5
ncr = 3k 2 a 2  (159)

where; c=5/14 for A, and c=5/17 for B,. Approximate amplifications for the critical mode
for al3n2 << 1,Rn 2 - 2tn 2 and k=1/2 are given by reference [20] as:

e Rn - TfeRn
A,,o, - and B,, = 1(160)2nn Rn2

An important conclusion from studying the effect of length in plastic flow buckling is that
the number of waves (n,) in the buckled mode increases with shell length. For the same load
and a/h value, a short shell with k=0.5 buckled with wave number 13, compared to its longer
counterpart of k=0, which buckled with wave number 21 [21].

For the general case where both directional and strain hardening moments are significant,
Lindberg and Florence [4, again derive an expression for the critical mode n,, by minimizing
A,,(C) with respect to n to obtain:

n 3= Cq) /fi(2 - k)KI
C(q) f3( 2 (161)

k
2 

KW

where: C(q) = c(Cle - q o) and c=0.36, cl = 0.85, qo=O.1, q > 0.01, q P 2(2_k)K 1. , f(--

1 (!-L)2 and -i -
The approximations to the amplification functions, A,,(0), can be used to establish critical

buckling velocities and impulses by establishing a limiting value of A,(0). This is done in
Section 3.
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2.4.2 Elastic Pulse Buckling of Finite Length Shells

Mclvor and Lovell [23], address the topic of autoparametric, elastic response of pulse
loaded finite length cylinders in the same manner as Goodier and McIvor [10] for infinite
length cylinders, described in Section 2.2. Expressions for the membrane and bending energy
are derived and given in Reference [23]. These are considerably more complex than those of
equation (42), as the axial strain must also be considered in the energy integral. Displacement
functions:

u(x,E,t)= V (t) sin-- cos 
rnO n-O

S0 0'

v(x,9,t)- E V ZV (t)cos -IsinnO
m=0n0 1

w(X,0, t) E 1 Z 1mn(t) COS MrXCosO (162)
m=On=O I

are assumed which now consider axial variation of the shell generator. Boundary conditions
which facil;Late a solution have been ssumed; 2-, u, radial and circumferential shear are zero
and v and w are non-zero at the ends. These boundary conditions are not neccessarily of most
interest in practical problems. Expressions (162) are substituted into the energy expressions
which are in turn used in the Lagrange equation, (47), to determine the equations of motion
with U,,, Vmn and Wn,, as generalized coordinates. These expressions are similar in form to
equations (48) and (49) of the infinite length case but are considerably more complex and have
three pairs of equations for each of u, v and w, whereas the infinite length case only considered
the radial displacement, w.

For a radial, impulsive velocity on the shell, the equation of motion (Lagrange's equation)
for the fundamental hoop mode (n=m=0) is reduced to [23]:

iloo + WOo = 0 (163)

With initial conditions woo(O) = 0 and ?i,0o(0) = aVo/c, where c = E/p(1 - v') = El/p and the
initial velocity V4 , is much less than c for elastic response, the solution to equation (163) is:

aVo
Woo(r) = sinr (164)

C

where r = ct/a. Perturbations of the higher order harmonic terms are used to investigate
stability with initial velocity imperfections given by:

tbmn(0) for -, << 1 (165)
C
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Figure 14: Mathieu Stability Curve for Finite Length Shell (from reference [231)

Considering products of perturbations to be negligible, the Lagrange equations for generalized

displacements, Un, Vmn and Wn. become:

Omn + CI Umn + C 2 Vmn + C 3 W Umn = 0

V.n + C 2 Umn + C 4 vmn + C 5 Wm, = 0

Wmn "+ C 3 Umn + C 5 Vmn + Wren(C 6 + C 4 Woo/a) = 0 (166)

where Ci are defined in reference [23] and are functions of m, n, h, a and 1.

Neglectir.g tangential inertia (Um,, = Vm, = 0) allows Um, and Vm, to be expressed in terms

of Wm,, from which the latter of equations (166) can be written in the Mathieu differential
equation form:

fi$m, + (7 + It sin T)Wmn = 0 (167)
C6 C2 (CI C4 - CC, )2

where fQ = 76 - + and is a function of the shell parameters, m and n, and

jA = C4 Vo/c. The resulting Mathieu stability curve is shown in Figure 14 for the Q7 = 1/4 region

of stability for given initial velocity and shell parameters. Parametric points (Q, p) are defined

by intersections of families of curves of m and n. Only the m=O line was present for the infinite

shell case in Figure 5. As a result of finite length allowing higher axial modes of response,

there are many more points in the unstable region of the Mathieu diagram. Reference [23]

demonstrates that as the shell length increases, the m=1,2,... lines converge with the m=O line,
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giving the response of the infinite shell (Figure 5). The response of the shell i, determined by
numerically integrating the equations of motion for a few of the most amplified modes. These
modes are obtained from the Mathieu stability diagram and confirmed [ ensuring that the
response for the chosen modes is of comparable energy to the input kinetic energy. Results of
numerical integ-ation in reference [23], show that the modes of maximum amplification are not
always of the m=O mode as in infinite shells.

Since this analysis is for purely elastic benaviour, elastic buckling, which grows to permanent
deformation or collapse before hoop mode yield, will only occur for very thin shells. The
important aspect of this theory, as in the case of the infinite shell elastic response theory is
that stresses are significantly amplified by the flexural modes over the purely radial hoop mode
stresses. These amplifications need to be determined from the summation of the harmonic
amplitudes obtained from numerical integration of the Lagrange equations. Results reported
in reference [23 indicate that amplification factors as high as four for circumferential stresses
and eigl,t for axial stresses may exist.

The case of parametric instability of elastic, finite length cylinders has been addressed by
several authors for nonimpulsive loads [19,15,16]. For these cases, the Donnell shell equations
have been used to derive the equations of motion for the unperturbed radial and perturbed
flexural motions. Bienick, Fan and Lackman [16], derive equations of motion from Donnell
equations and use the Galerkin method to obtain a solution for a system of differential equations
and arrive at a Mathieu type equation. Similar results to those of Mclvor and Lovell [23] are
attained, where an increase in the number of parametric points in the Mathieu diagram results
from decreasing the length of the shell. Yao [15], gives a good discussion of the development of
the Mathieu equation from Donnell shell theory and gives several examples of its use for shells
loaded radially and axially. It is, however, for very thin shells under static or periodic loading.

Anderson and Lindbeig [19], u-e Donnell shell theory to derive the equations of motion for
the shell, which will be repeated here. Using the compatability equation:

4 1 O U'  (9W )2 +)-9W 2

A F+ Eh[-x 2 "( j2 +( -A =y2 J (168)

and equilibrium equation:

1 a2 F 49Fd2 w a2W a F 2 w 02 F Ow
DA9w + + -= 0 (169)a X2 gy 2 ax 2  2 ayxgy cX2 ay2

of Donnell shell theory [24], inertial and initial displacement imperfection terms are added, from
which the equilibrium equation becomes:

DA 4  + 2 No" 02 + 02 No 0 2  (
(w2NaWa22(w+w)+ a (w+w)+-+ph-
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with N,, and N.e defined by tht Airy stress function, F, and No defined by tile Airy stress
function plus the membrane force from radial motion giving:

N- 0 2 F y2 F Eh Wo 02 F
;2- (171)

9a202, N.= aOOx and N 0 - 1-/nU2 a Ox2

The compatability equation becomes:
Eh O2 w

AF = Eh(172)
a 0x

2

where the variations of w0 with 0 dissappear, as w is the radial hoop mode. The stress func-
tion, F, represents the perturbed flexual motions. Nondimensional quantities are introduced in
reference [19] as:

u = w/a, ui = wi/a, = z/a, I = L/a, and, r = ct/a (173)

and the displacement and pressures are assumed to be of series form:

u( , 9, r) = ucr) + c u,(r) cos nO sin ,r /l
n=1

U,(, 9) = 6,,(7) cos nO sin rc/l
n=1

p(,O,7) =a( - V2)[p(r) + 1: p,, (r)cosnOsinr&/l (174)
"n=1

where displacement and pressure distribution have been assumed to be half sine wave form
(simply supported ends), and p,(r) are the pressure perturbations from which stability can be
determined. Substituting the first of equations (174) into equation (172) yields:

1 02 02 Eh 00 7r(2

-- (- + j-. )F = cs -s-uncsnOsinr/ (175)
n=1

F must then be of the form:
00

F= : "Yu,(r)cosnOsin7rU/l (176)
n=l

which when substituted into equation (170) yields the equations of motion:

iio + Uo = Po

[Ct2- [a +( r2 )2 + (1- /nu 2)(7r/) 4  n2uo]u, = p, + n2u o-, (177)
12 +[a:2n 2 + (7r2 /1 2 )] 2

which must be evaluated numerically to determine the shell motion. Equation (177) is of the
Mathieu type.
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2.5 Effect of Pulse Duration on Response

The theory of the preceeding sections has been for response to ideal, perturbed axisymniet-
tic impulsive loads where an ideal impulse, applied over a zero time period can be represented
as a Dirac Delta function. The ideal impulse was applied as an initial velocity condition since
it had no time dependence. In reality, an ideal impulse is difficult to achieve, as the pulse will
have some finite time duration.

A time dependent loading function must be incorporated directly into the equation of mo-
tion. This was seen in Section 2.4, where the Donnell shell equation was used to investigate
stability. Anderson and Lindberg [19], investigated the effect of loading rate by considering the
plastic flow equation for quasi-impulsive loads and the Donnell equation, (177), for quasi-static
loading. This implies that dynamic pulse buckling occurs when the shell is in the plastic flow
regime, which is true for all but very thin shells, and that static buckling occurs in the elastic
regime. Reference [19] defines the impulsive loads by triangular and exponential functions,
giving I = PT/2 for the triangular shaped pulse and I = PT for the exponential shaped pulse,
where T is the exponential time constant.

The plastic flow equation of motion is defined, including time varying pressure and variable
material properties, as [19]:

a2 Et 04u &2Et ae ___o o 02i

+ E 00U + (-E- + _,),-b + -2(l + u) = P - (i + &2) (178)

where the initial displacement imperfection and the displacement and pressure functions with
perturbations are defined as:

ui(O) = >_, ,, cos no
n= 1

00

u(Oe, T) = uo(T) + Z u, cos no
n= 1

p(O, r) = po(r) + Zp" ncos nO (179)
n= 1

resulting in the equations of motion:

iio + j (1 + Uo) = PO

ii, + (n - 1- n - E]U, = pn +2 (n2 -1)6n (180)
E E

with initial conditions u,(O) = itn(O) = 0. Solutions of equation (180) are obtained by numerical

integration as are the results for the elastic model frra" equation (177). Both equations are of

Mathieu form.
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Figure 15: Peak Pressure versus Impulse Curves (from reference [19])

By arbitrarily assuming a critical imperfection amplification of 1000 as the buckling thresh-
old, Reference [19] derived curves from the two theories as a function of impulse versus pressure,
shown in Figure 15. The two curves are hyperbolic, approaching two asymptotes of a critical
impulse for high peak pressure and critical peak pressure for high impulse. The critical impulse
approaches the ideal impulse from the plastic flow pulse buckling theory of section 2.1 and the
critical pressure approaches the elastic, static buckling pressure for infinite time duration. The
intermediate portion of the curve, where both elastic and plastic behaviour are significant, is
not defined by either theory. Through numerical calculations it is demonstrated that for inter-
mediate a/h ratios, there are two fundamental growth modes, one of higher harmonics for the
plastic flow behaviour and one of lower harmonics for the elastic behaviour.

Lindberg and Anderson [19], investigate the effects of various parameters on the curve of
Figure 15. The pulse temporal variation, of exponential or triangular shape, showed a maximum
shift of 35 percent in the curve. Changing the a/h ratio had an expected effect of changing
the relative proportions of the two curves. For thick shells (small a/h), the hyperbolic curve of
the plastic flow theory was dominant with very little or no elastic curve in existance. For thin
shells (large a/h), the opposite behaviour occurred, with the elastic hyperbola dominating. A
change of length of the cylinder affected only the elastic branch, as the plastic flow theory used
was for infinite length cylinders.

Approximate formulae for the hyperbolic curves have been developed in reference [191, from
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Figure 16: Peak Pressure versus Impulse Curves (from reference [19])

which, for a given shell, critical load parameters can be established. The curves are defined by:

[(P/PA) - 1][(I/IA) - 1] = 1 (181)

where for the plastic flow curve:
3

PA = PT = -ay(h/a) , and,

IA = IT = (96/K) 4 a(pcr)1 / 2 (h/a)3 /2  (182)

and for the elastic case:

PA = PE = 0.92E(a/L)(h/a)
1/ 2

;,ad, IA = IE = 5pca(h/a)2  (183)

where K is the a/Et slope of the shell material. The form of curve derived from these is shown

in Figure 16.
Characteristic pulse time durations are also derived, defining which theory best describes

the shell behaviour:

T > TT = 2(a/c) r plastic flow theory

T < TE = 5.5(L/c)7/h elastic theory

TE < T < TT intermediate strain reversal theory (184)
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Nachbar [25] investigates the impulse to cause failure in an elastic/perfectly-plastic infinite
cylinder, as a function of pressure versus time duration, for a rectangular pulse shape. Failure
is assumed to occur at a specified displacement, wf, and motion termination occurs at r when
wb=0.

The equation of motion for the radial hoop mode is given as:

02w h0 (18.5)
pah&2 = pR - I-W(

where R = a(1 - w). Upon introducing nondimensional notation, equation185 becomes

921/ W

S = p(l - u) - (186)

After some manupulation, reference [25] presents an expression for the critical impulse under
Dirac Delta function loading as:

i,= 2 1 adw (187)

For elastic perfectly plastic material which defines a(w) = u for u < uy and u = uy for u > us,
the critical impulse for a Dirac Delta function becomes:

If, = W,2 -1 (188)
WY

where wf < 0.1a.
For the case where the duration of the impulse is less than the time of response spent in

the elastic regime, t., the impulse to cause failure is given as:

if = uy V /2f + 1 (189)

where A = - = t 2 (- - 1). The ratio of finite pulse to Dirac Delta function impulse is

given as:
I T/2 (190)
i, sin T/2

where T < 2arccos[A1  fA + 1]. For the case where the pulse duration is greater than ty,

1._= f =P°T, A,+1 (191)

II, WY
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Figure 17: Critical Pulse Parameters for Axisymmetrically Loaded Cylinders (from reference
[25])

where T > 2 arccosr[A, A + 1] and Pc .-- t- pulse amplitude. The minimum pulse amplitude

which will cause failure defined by wf, is:

Po = W2[+ ] (192)

occuring over a pulse of duration:

T = Tm, z, = Af /2 + A2 + 2 + arcsin 1 + A2' (193)

From this theory, curves of impulse ratio to pulse duration time were produced from which
critical rectangular pulse parameters can be derived. These curves are shown in Figure 17 as a
function of Af, which is the time spent in the plastic regime.

The theory of Reference [25], has been based solely on tracking the mean radial displacement
of the hoop mode, w. No flexural perturbations are considered. It is assumed that flexural
buckles will form at a given w, and that the longer the time spent in the plastic regime, the
more likely it will be that flexural buckles will form.

50



2.6 Effect of Spacial Pulse Shape

In many practical problems, and certainly in the case of a submarine subject to shock
loading, the pulse wave will not be axisymmetric and, in fact, will also not be applied to the
entire shell instantaneously. The main restriction in assuming axisymmetry in the preceeding
theory, is that the circumferential membrane stress is independent of circumferential location.
In asymmetric loading functions, this is not the case. For thicker shells, which buckle in plastic
flow at higher harmonics, it has been postulated [27,19,4], that if the circumferential stress can
be assumed to be constant over a few buckled wave lengths, then the maximum circumferential
stress, ao, can be used in the axisymmetric pulse buckling equation. This requires that a finite
element analysis of sufficient accuracy to predict the peak membrane stress of the shell, 0'0. as
a function of time, be undertaken. These values are then used in the numerical integration of
the axisymmetric equations for perturbed motion.

In thinner shells, or for shells with longer duration pulses, the buckled wave lengths will be
longer (smaller number of harmonics, n), and it is less likely that the circumferential stress will
remain constant over one wavelength. This also depends, in both thick and thin shells, on the
degree of asymmetry in the loading function which must be at least smoothly varying.

An impulse loading of the distribution described by:

I = I, cos 0, for, - r/2 < 0 < r/2

= 0, for, r/2 < 0 < 37r/2 (194)

was investigated in reference [41. Experimental results indicated that buckling took place over
about 120 degrees of the shell. Studies utilizing ao results from finite element analysis, com-
paring peak impulse values to give the same deflection amplitude, indicate that a greater peak
impulse is required for the cosine distribution. This varies from about 20 percent greater for
the thick shell-plastic flow case to 100 percent greater for the thin shell-elastic case. It was also
determined [4] that for the cosine pulse, the a/h ratio at which the behaviour is purely elastic is
shifted much higher. For the axisymmetric pulse, a/h=288 and for the cosine pulse it increases
to 480.
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2.7 Strain Rate Reversal

In the plastic flow theory the assumption was made that the shell was in a continuous state
of compression. In fact, as the buckles grow with time, the outer and inner fibers of the shell
will see some reversal of strain rate, with tension zones eventually occurring in the convex parts
of the buckles. The effects of strain rate reversal on the simple theory outlined in section 2.1
were investigated by Lindberg and Kennedy [26] through a numerical finite element computer
code which modelled layers through the shell thickness to obtain correct strain distribution and
more complete results. Two main differences from the simple theory were noted in this study.

The time to final response was shorter in the finite element code results, as the additional
loss of energy from the hoop mode to the flexural mode was modelled. In the simple plastic
flow theory, it was assumed that the hoop mode absorbed all of the initial kinetic energy before
motion ceased. This shorter response time resulted in the simple theory overestimating the
buckled amplitudes as they were allowed more time to grow.

The occurrence of strain rate reversal caused the buckles to unload elastically. This greatly
increased the stiffness of the buckles as the elastic modulus instead of the strain hardening
modulus was in effect. The motion of the higher harmonics was significantly curtailed as the
higher harmonics have higher curvatures and thus experience strain rate reversal earlier. The
result was that buckling occurred at significantly lower harmonic numbers than the simple
theory predicted. Figure 18 shows the results for harmonics n=20 and n=30, comparing the
finite element computer code theory to the simpler plastic flow theory. The predominant har-
monic of the simple theory was n=30, and of the code results was n=20. The simpler theory
significantly overexaggerated the response based on using the incorrect n=30 harmonic but
reasonable agreement was attained for the n=20 harmonic between both methods.
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2.8 Material Property Effects

For impulsive loading, the effect of high strain rate on material properties may be signifi-
cant. It is well known that the yield stress of a material may increase under high strain rates.
This effcct, although acknowledged, has not been specifically considered in available references
for pulse buckling. Increased yield stress will affect the elastic response theory (Section2.2) if
Young's Modulus is changed. The effect of increased yield stress on the plastic flow theory will
be to increase the membrane flow stress value of equation(3). For more complete theory, where
variable material properties are included via numerical integration of the equations of motion,
a strain rate sensitive material curve could be used, if it were known.

Another strain rate effect is that of viscoelasticity and viscoplasticity, where the modulus
can be very dependent on strain rate. For response to pulse loading, the strain rate continuously
decreases with the motion as it comes to rest. This means that a continuously varying modulus
must be considered in the analysis. Lindberg and Florence [4] have addressed pulse buckling
response of finite length cylindrical shells of viscoplastic material. This follows the theory of
Section 2.4 for plastic flow buckling of finite length shells. A relationship between generalized
stress and generalized strain rate for viscoplastic material is used.:

-' = 0'/0o - 1 (195)

where -y is the viscosity constant from material tests and or0 is the generalized stress at infinites-
imally small strain rate. The equation of motion for the unperturbed radial motion is:

S+ 2(2 - k) A., -(2 -ak2Uo (196)3U2 p A"2ap

which varies from the plastic case by the term o0) tb0 replacing Ehwo. The solution of equa-
tion (196) is given as:

3a 1 -
2(2-k) !j01 3a 2p 3at19

Wo -- [Vo + ]] - (97
211'2  3a2p 2(2 - k)ao 2-t ('29

The equation of motion for the perturbed flexural motions, is given, in the nondimensional
parameters used in equation (148), as:

a2 3k 2  4 y1 O V0 02u
(2 ) + -)- + 2rf-- = 0 (198)

in which the second term varies from the non-viscoplastic case of equation (1-I'). By making
the substitutions of equations (127) to (130), the governing equation becomes:

ii- - (P, + O,/o)itn - Rn (199)
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wee ,=4ck2 VgK2n
4  3cyk~n4where: P = -k) and Q_ = (

2 kn - with solution in the same form as the non-
(2-k)K,

viscoplastic case:
un = A,( )a, + Bn( )bn (200)

where An( ) and B,( ) are the amplification functions for the displacement and velocity per-
turbations and are now defined in terms of Kummer functions and given in reference [4, pg
246].

Experimental work reported in Reference [4] demonstrated that for fully annealed 1015
steel, the effects of increased strain rate were increased the yield stress and lengthened plastic
portion of the material curve. A relationship for increase in yield stress with strain rate is
postulated by Symunds and Bodner[28] as:

a/ay = I + (t/D)'1 P  (201)

where a. is the static yield stress and p and D are constants dependent on the material (5 and
40.4 respectively, for mild steel).

The key material parameter in plastic flow buckling is the tangent modulus. If the tangent
modulus is assumed to be constant (linear plastic regime), closed form solutions are attainable.
The tangent modulus is not usually linear, in which case numerical integration of the equations
of motion is required. A description of the mateial curve used in much of the work is:

p = a/E = E, for, 0 < 1E <

= Cy + K(c - cy), for, c > y (202)

which describes curves of the form shown in Figure 19.
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3 Approximate Formulae for Critical Impulse and Critical
Modes of Dynamic Pulse Buckling

From the precending theory, formulae for the critical mode of response and for approxima-
tion of the critical impulse to produce pulse buckling have been derived.

The critical mode number (predominant harmonic of response) for plastic flow buckling of
infinite cylinders or rings is given as (equation 24) [9]:

n2 1(2 +1
cr 1) (203)

which, if 1 is neglected with respect to s 2 , becomes: nr = v"61 Stuiver [11] derives ah\, Eh
critical mode equation for the same case using the combined elastic-plastic theory (cquation 92):

= 0.85 /6a( )1/2[l + (/ 3 °-/c) 2 ]l/ 4  (204)
h Eh

which gives comparable values to equation (203). For plastic flow buckling of short shells where
directional moments dominate the strain hardening moments, Vaughan and Florence [20] give
the critical mode (equation 135), as:

n, = (72)1/4 V (205)
h

For variable length shells. Lindberg and Florence [4] give the expression (equation (161)):

n3 = C(q) -2(2 - K) ) (206)
3k 2 a2

where the parameters are defined in section 2.4.
For viscoplastic material response, where the viscoplastic moments dominate the directional

moment, -eference [4] gives the critical mode as:

3 3a )V/(2-k)pncr 84- (207)
a2y K 2 3;

where the parameters are defined in section 2.8. All of the above formulae are for thick shells
where the response is considered to be entirely plastic.

For response where behaviour is entirely elastic, equation (54) gives the critical mode for
response without permanent buckling as [10]:

(2
ncr = 1.316 (208)

57



For larger initial impulses where buckling can occur, the empiical relation (equation (65))
gives: 4 0.25 0.13V"2  

(209)
Cr a2 c2 a2

Stuiver [11], gives a value for the elastic critical mode as:

a/Vo
n, =2 aV (210)

h co

To establish the critical impulse which will cause dynamic buckling, a limit of displacement
amplitude to define the point of buckling must be defined. With simplifying assumptions on
material properties and critical mode numbers. equations for approximate critical impulse have
been derived.

For plastic flow buckling of infinite cylinders or rings, Lindberg aad Florence [4] derive an
expression for the impulse required to give a 20 fold increase in initial shape imperfection as:

I, = pa E( ) 2  (211)
E a

Lindberg and Florence also give threshold impulse values for variable length shells failing by
plastic flow buckling, by taking the limit as a shape amplification of 100, ie. A, = 100. For
long shells, with k=0, this gives:

h2
= 3.0 pEha(a 2  (212)

and for short shells with k=1/2, this gives:

1, = 2.46 vp a(ah) 3 /2  (213)

for q > 0.5 where q 23k2'' For variable length shells, the impulse functions:

I = K - )- I4f(N)3/2(lnV/eA)c  for 0.01 < q

= (ph2-k--;-)fjpvEa( In) An fo' 0.01 > q (214)

can be used, by setting the amplificatiov, An, equal to 100, and where the variables are defined

in Section 2.4. For viscopiastic material response, Lindberg and Florence give the impulse
amplification relation:

4 2(2 - k) 1 3 2 2 1 1 h 8A_
I (215)

3 9K 2  a 5
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for which A, may be taken as 100 to dctermine critical impulses.
For buckling in the elastic regime, where the flexural buckles exceed yield before the hoop

mode, a value of p=4 is used in equation (71) to give an amplification of initial shape imper-
fection of 65. From the relation for impulse to velocity of I = phVo, the critical impulse for a
condition of p= 4 is given [4] as:

1, = 1.15pCa(a) 2  (216)
a

where the condition, a/h < 1.15/cs, must be met to ensure the hoop motion does not exceed
yield.

The curves presented in Section 2.5 from reference [19] can also be used to establish critical
impulses, particularly if the loading is not for an ideal impulse.

To cover the full range of a/h values, Lindberg and Florence [4] suggest using the plastic
flow and elastic buckling threshold equations, and then using whichever gives the lowest value.
When these are plotted on a graph of a/h versus I,, Figure 20 results (for the given aluminum
shell). The two equations defining the two buckling lines are given as:

I
-= 1.807D(h/a) 3/1 for a/h < .405/D 2

pca
= 1.15(h/a) 2 for a/h > .405/D 2  (217)

The results of these various formulae have been investigated via a computer program for
shells of various dimensions and properties. Table 2 gives the shell parameters and Table 3
gives the results.

Models 1 to 19 were used to investigate shells with increasing a/h ratios. Columns A, B and
C give the critical mode from infinite cylinder, plastic flow theory. The critical mode increases
with a/h and the theory becomes inapplicable for a/h much greater than 40, where elastic
behaviour starts to have some influence. Columns D and E give the critical modes for the short
cylinder, plastic flow theory. The greater resistance to bending resulting from the directional
moment contribution is evident in the lower mode numbers for these cases. Columns F, G and
H give the critical impulse and velocity to cause plastic flow buckling. As the shell becomes
thinner (larger a/h), the required impulse becomes less, as would be expected. Column I gives
the critical mode for the low velocity, elastic vibration response. Columns J and K give the
critical modes for the larger velocity, elastic buckling case. The critical modes also increase
with a/h ratio. Column L give the critical impulse and velocity to cause elastic, dynamic pulse
burkling and as in the plastic flow case, as a/h increases, the required impulse decreases.

The effect of changing the material yield stress, oy, is investigated with Models 3, 20 and
21. There is no change for any of the formulae except for column B which shows a decrease in
the critical mode number with decreasing yield stress. This is from the elastic-plastic theory of
Stuiver 11] who included some elastic effect in the determination of the plastic flow buckling
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critical modes. Formulae for column A and C would also be affected as they are a function of
the flow stress, ar, which is a function of the yicld stress. This can be seen in models 31 to 33
where on is varied.

Models 3 and 22 to 25 were used to investigate the effect of varying the tangent modulus
in the strain hardening portion of the material curve. Columns A, B and C for the infinite
shell, plastic flow theory show a dramatic decrease in the critical mode for increasing tangent
modulus. Columns F and G show that the required critical impulse increases with tangent
modulus for the infinite shell, plastic flow case, as would be expected due to an increase in the
shell stiffness. Columns D and E for the critical mode and column H for the critical impulse
show no change with varying tangent modulus as these values are for the short shell case where
the directional moment is assumed to be dominant over the strain hardening moment.

The effect of varying the initial velocity was investigated with Models 3 and 26 to 30. There
is a slight variation in column B with the critical mode number increasing with increasing initial
velocity. This is from equation (204) which shows a variation of n, as the square root of V0 .

Column E shows a strong dependency of n, on V0. The other plastic flow formulae show no
variation with initial velocity. The critical impulse and velocity formulae, are, of course, not
affected by V0. The elastic critical modes for velocities large enough to cause buckling are
influenced by the initial velocity. Columns J and K show that the critical mode number varies
proportionally to the initial velocity.

Models 3 and 31 to 33 were used to investigate the effect of varying the flow stress value,
am. Columns A and C show a decrease in critical mode with decreasing flow stress. Column
B, from equation (204), shows no change in critical mode with flow stress, but, the flow stress
is an average value which is dependent on the yield stress and tangent modulus, which are
parameters in equation (204) so some effect should be realized. This is also the case in the
critical impulse formulae of columns F and G where the tangent modulus is used. The flow
stress does not have any influence on the elastic theory.
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Model a(in) h(in) a,(psi) am(psi) Eh(psi) Vo(in/sec) p(lb-sec 2/in 4 )
1 10 1 60,000 70,000 1,000,000 6,000 0.000787
2 20 1 F 'J,0 70,C21 1,0C,0nn F,00 0.000787
3 30 1 60,000 70,000 1,000,000 6,000 0.000787
4 40 1 60,000 70,000 1,000,000 6,000 0.000787
5 50 1 60,000 70,000 1,000,000 6,000 0.000787
6 60 1 60,000 70,000 1,000,000 6,000 0.000787
7 70 1 60,000 70,000 1,000,000 6,000 0.000787
8 80 1 60,000 70,000 1,000,000 6,000 0.000787
9 90 1 60,000 70,000 1,000,000 6,000 0.000787
10 100 1 60,000 70,000 1,000,000 6,000 0.000787
11 120 1 60,000 70,000 1,000,000 6,000 0.000787
12 140 1 60,000 70,000 1,000,000 6,000 0.000787
13 160 1 60,000 70,000 1,000,000 6,000 0.000787
14 180 1 60,000 70,000 1,000,000 6,000 0.000787
15 200 1 60,000 70,000 1,000,000 6,000 0.000787
16 250 1 60,000 70,000 1,000,000 6,000 0.000787
17 300 1 60,000 70,000 1,000,000 6,000 0.000787
18 350 1 60,000 70,000 1,000,000 6,000 0.000787
19 400 1 60,000 70,000 1,000,000 6,000 0.000787
20 30 1 50,000 70,000 1,000,000 6,000 0.000787
21 30 1 40,000 70,000 1,000,000 6,000 0.000787
22 30 1 60,000 70,000 2,000,000 6,000 0.000787
23 30 1 60,000 70,000 3,000,000 6,000 0.000787
24 30 1 60,000 70,000 4,000,000 6,000 0.000787
25 30 1 60,000 70,000 10,000 6,000 0.000787
26 30 1 60,000 70,000 1,000,000 9,000 0.000787
27 30 1 60,000 70,000 1,000,000 5,000 0.000787
28 30 1 60,000 70,000 1,000,000 3,000 0.000787
29 30 1 60,000 70,000 1,000,000 1,000 0.000787
30 30 1 60,000 70,000 1,000,000 500 0.000787
31 30 1 60,000 65,000 1,000,000 6,000 0.000787
32 30 1 60,000 61,000 1,000,000 6,000 0.000787
33 30 1 60,000 60,000 1,000,000 6,000 0.000787

Table 2: Shell Parameters Used in Table 3
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Model Plastic Flow Theory F:: Fh,
# ANcr Icr-Vcr(in/s) INr Icr-VcrA B C D El F G H I J K L1 6 5 6 9 81 5.1-6465 8.6-10943 5.8-7336 4 4 3 18.5-23537

2 12 10 12 13 14 2.5-3232 4.3-5471 4.1-5187!1 5 7 61 9.3-11768
19 16 __ 18 15 1 1 1.7-2155 2.9-3648 3.3-4236;' 7 11 101 6.2-78464 25 21 24 18 22 1.3-1616 2.2-2736 2.9-3668: 8 14 13 4.6-5884

5 32 26 30 20 25 1.0-1293 1.7-2189 2.6-3281"! 9 18 17 3.7-47076 38 32 36 22 29 .8-1077 1.4-1824 2.4-2995, 10 21 20 3.1-39237 45 37 42 24 32 .7-923 1.2-1563 2.2-2773111 25 23 2.6-33628 51 43 48 26 35 .6-808 1.1-1368 2.0-2594 !11 28 27 2.3-2942
9 1 58 48 54 27 38 .55-718 1.0-1216 1.9-24451'12 32 30 2.1-261510 64 53 60 29 40 .5-647 .86-1094 1.8-2320 !13 35 34 1.9-235311 77 64 72 31 46 .4-539 .7-912 1.7-2118I1 14 42 41 1.5-196112 90 75 84 34 50 .36 462 .6-782 1.5-1961 15 49 47 1.3-168113 103 86 96 36 55 .32-404 .54-684 1.4-1834 1!16 57 54 1.2-1471

14 116 96 108 39 60 .28-359 .48-608 1.4-1729 :17 64 61 1.0-130715 129 107 120 41 64 .25-323 .43-547 1.3-1640118 71 68 .93-1177
16 162 134 150 46 74 .2,-259 .34-438 1.2-1467 20  89 85 .74-94217 194 161 180 50 84 .17-216 .29-365 1.1-1340 22 106 102 .62-78516 1226 btsi 211 54 93 .15-185 .25-313 .98-1240 24 124 119 .53-67319 259 215 241 58 101 .13-162 .22-274 .91-1160 26 142 136 .46-588
20 19 15 18 15 18 1.7-2155 2.9-3648 3.3-4236- 7 11 0 5.2-784621 19 13 18 15 18 1.7-2155 2.9-3648 3.3-4236 7Ii i 6 2_7846-13 12 12.-5 18 2430 8-4.1-5159 3.3-4236 7 11 10 6.2-78469223 .343 7 11 10 6.2-784623 1I 11 10 15 18 2.9-3721 5.5-6318 3.3-4236 7 11 10 6.2-784624 9 11 9 15 18 3.4-4301 5.7-7296 3.3-4236 7 11 10 6.2-784625 1194 152 180 15 18 .17-216 .29- 365 3.3-4236 7 11 10 6.2-784626 1 IT 1h6 7- 2 i2 1.7- 2155 2.9-3648 3.3-4236 7 13 12 6.2-784621 19 15 18 15 17 1.7-2155 2.9-3648 3.3-4236 7 10 9 6.2-784628 19 15 18 15 14 1.7-2155 2.9-3648 3.3-4236 7 8 7 6.2-784629 19 15 18 15 10 1.7-2155 2.9-3648 3.3-4236 7 7 4 I 6.2-7846
30 19 15 18 15 8 1.7-2155 2.9-3648 3.3-4236 7 7 2 6.2-7846
31 18 16 1715 18 1.7-2155 2.9-3648 3.2 -4082 7 li 10 6.2- 846
32 18 16 16 15 18 1.7-2155 2.9-3648 3.1-3954 7 11 10 6.2-784633 18 16 16 15 18 1.7-2155 2.9-3648 3.08-3921 7 11 10 6.2-7846

A= Eqn 203, Ref 9 E= Eqn 206, K=1/2, Ref 4 I = Eqn 208, Ref 10B= EgTi 204, Ref 11 F= Eqn 211, Ref 4 J= Eqn 209, Ref 4C= Eqn 206, K=0, Ref 4 G= Eqn 212, K=0, Ref 4 K= Eqn 210, Ref 11D= Eqn 205, Ref 20 H= Eqn 213, K=1/2, Ref 4 L= Eqn 216, Ref 4

Table 3: Results of Various Formulae for Critical Modes and Impulses
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4 Review of Numerical Solutions to Dynamic Pulse Buckling

Finite difference and finite element numerical methods have been used to solve a wide vari-
ety of complex structural mechanics problems, particularly where analytical solutions cannot be
easily found. The successful utilization of numerical methods hinges on being able to formulate
a discretized model and solution scheme capable of modelling the correct physical behaviour.
For dynamic pulse buckling, this means that the model must be capable of reproducing the
nonlinear, elasto-plastic motion of the shell wall in the higher harmonic modes which occur in
pulse buckling.

Most numerical studies of pulse loading consider only unperturbed dynamic response and do
not consider the growth of buckling modes in the solution. Element grid discretization, nonlinear
formulations, solution methods, material property representation and the failure cutoff criteria
are parameters which need to be investigated for numerical determination of dynamic buckling.

Ishizaki and Bathe [29], investigated static and dynamic, linear and nonlinear response of
perfect and imperfect shells with the finite element program ADINA [30]. A spherical cap, a
cylinder and a sphere were investigated to determine the collapse loads. For large displacement,
elasto-plastic (E.P.) response, updated and total Langrangian (T.L.) kinematic formulations
were investigated as well as the modified Newton and the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) iterative solution schemes for equilibrium [31]. Without modelling imperfection per-
turbations in the shell geometry, the elastic bifurcation and the elasto-plastic yield collapse
loads can be determined. Figure 21a demonstrates the response of a complete sphere to a static
loading. Figure 21b shows the response of the perfect sphere to a dynamic step loading of half
the elastic buckling IL magnitude. The elasto-plastic curve assumes a permanent set about
which the response oscillates and the elastic response oscillates with greater amplitude but
reaches zero displacement on each oscillation. Figure 21c shows the response to static loading
of an imperfect shell. The lower curves include the geometric nonlinear total Langrangian for-
mulation which allows the growth of the imperfections to produce instability. Figure 21d shows
the response of the imperfect shell to the dynamic step load. The top curve shows the results
of the elasto-plastic, total Langrangian formulation which models the unbounded growth of the
imperfection. This latter curve models the physical characteristics that the analytical solutions
did, that is, allowing unbounded nonlinear growth of displacements for a specified load. Two
important factors in reproducing this behaviour with the finite element method are that im-
perfections in the modes of response must be modelled to produce the unbounded growth, and
that the load amplitude has to be increased in consecutive analyses until instability occurs.
Instability was established in the ADINA study at the point where the determinant of the
stiffness matrix became negative (singular). Some major difficulties in formulating a solution
to pulse buckling response of shells with the finiteo 'ement method are evident.

The analytical solutions discussed in Section 2 indicate that the circumferential modes
of predominant response (buckling growth) occur in higher harmonics than static buckling
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modes. It can also not be easily determined which mode wil! predominate. Therefore it is
necessary to model imperfections for several harmonics of numbers up to 30 or higher. This
requires a very high level of discretization in the circumferential direction of the shell. In
determining the response of the cylindrical shell to a cosine pulse (the same problem as addressed
by Lindberg and Kennedy [26]), the model was discretized with 60, 8 noded elements in one half
of the circumference. Models to investigate dynamic pulse buckling, particularly as length and
complexities such as stiffeners are included, will very quickly attain a large number of degrees
of freedom. To determine the limit load of dynamic pulse buckling, several analyses runs at
increasing load levels will be required. Thus determination of dynamic pulse buckling response
by the finite element method will be an expensive and time consuming proposition. Quoting
from reference [29], 'nonlinear dynamic buckling analysis is frequently beyond the current state
of the art'.

Lindberg and Kennedy [26], investigate plastic flow buckling theory with a finite element
code, SABOR/DRASTIC 6 [32]. This is an uncoupled, axisymmetric finite element analysis
where response is investigated one mode at a time. The results of this work in relation to the
plastic flow theory were discussed in Section 2.7. The formulation of the finite element problem
involved modelling harmonic imperfections of the applied impulse. In this case, harmonics
derived from the plastic flow theory and from experimental results were used. Good agreement
between the numerical results and experiment was attained, due in part to the fact that the
imperfections used in the numerical analysis were derived from the experimental results.

Wesenberg [18] investigates dynamic buckling response for shells wth sc- c;Aa a/h ratios
and compares them to experimental results. These are ;-ussed in Section 2.3. Here again,
imperfection modes and amplitudes were measured from experimental results and used in the
numerical finite difference formulation.

More recently (1987-88), Gefken, Kirkpatrick and Holmes [33,34,35] applied three dimen-
sional nonlinear finite element solutions to rings and finite length thin shells with good corre-
lation to experimental results. The necessary requirements of using a finite element solution in
terms of initial imperfect shape and the level of discretization were investigated in these studies.
It was determined [35] that initial imperfections expressed in the exponential form:

A= .05h n < 10
h

A, = h n > 10 (218)

gave the best comparison to results of models with imperfections derived from measuring actual
cylinder imperfections. The finite element models were generated with a series of imperfections
covering a range of harmonics such that the geometry was formed by the harmonic summation:

100

R(O) = R + 1 An cos(n0 + On) (219)
n=2
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Kirkpatrick and Holmes[34] used the DYNA3D finite element code with the Hughes-Lui shell
element. They reported requiring approximately ten of these single-integration-point elements
per buckling wavelength.

Many studies investigate the dynamic response of shell structures to impulsive loading,
but do not investigate the possibility of dynamic buckling. Wu and Witmer [36] develop a
layered finite element model of a curved beam including strain hardening and strain rate effects.
Comparisons to experimental results from impulse loading are made. Lee and Horng [2,37]
develop finite difference solutions to elasto-plastic dynamic response of ring stiffened cylinders
to shock wave type loading. The critical yield points occur at the stiffener shell coT nection.
Buckling could have been investigated if the harmonic imperfections were included in tne study.

Several studies [38,39] investigate the finite element solution for displacements of cylindrical
shells subject to underwater shock loads. The nonlinear loading function of the coupled fluid-
structure interface is modeiled using doubly asymptotic approximation and boundary elements.
To investigate dynamic stability for this case, a nonlinear finite element code and modelling to
include imperfections in the initial shape and pressure pulse must be used in conjunction with
the loading algorithm.
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5 Conclusions

Analytical solutions for specific cases of dynamic pulse buckling have been established by
various authors through investigation of the growth of perturbations to the fundamental motion.

Cylinders loaded with an axisymmetric pulse which respond either entirely in the elastic or
entirely in the plastic material range have been investigated analytically. Approximate formulae

to establish the critical modes of buckling and the critical impulses to cause buckling for various
simple cases have been derived. These approximate formulae have been investigated for various
shell parameters within the context of this review. The dynamic buckling response is a function
of the shell dimensions, material properties and loading function. No analytical solution has
been derived for dynamic buckling of shells of intermediate a/h ratios which encompass man\
practical cases.

For complex shell geometries, complex loading functions or shells of intermediate a/h ratios,
numerical finite element or finite difference methods offer a potential solution. This is not
straight forward and few studies have investigated dynamic buckling solutions using numerical
methods. Material and geometric nonlinearitics have to be included in the formulation and,
as in the analytical solutions for the simple cases, solution is for excessive growth of initial
imperfections. No studies of ring-stiffened shells were found for this literature review. A finite
element solution seems to be most attractive for studying dynamic pulse buckling of submarine
structure. Pressure hulls tend to be of zn intermediate a/h ratio where elasto-plastic behaviour
and strain rate reversal are important to the response.

The physical concepts of dynamic pulse buckling have been established through review of
the analytical studies. These and the approximate formulae for critical modes and loads will
be invaluable in attempting to formulate numerical solutions of more complex problems such
as pulse buckling of ring stiffened submarine pressure hulls.
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APPENDIX A: Derivation of the Shell Curvature Expression

The change in curvature, r, is defined as the difference between the deformed shell curvature,
1 and the initial shell curvature, :

1 a

p a

The initial length of element inn, from Figure A.1, is ds = adob, and the initial curvature
is -0 = 1. The length after deformation, m 1 ni, is ds + Ads, and the angle of curvature is
do + Ado, which gives the curvature after deformation as:

1 d4o + Ado5
p ds + Ads

The angle Ado is:

Ow 0O2w . cw 0O2w
Ado do,1 - d,= + --7;-ds - - = ds

ds ds2

B

\n

n \ d

A

m,

Figure A.1: Geometry of Shell Curvature (from reference [40])
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The change in length, Add, is:

adO - (a - w) = -tdo = -?i-
a

giving the curvature as:
_d+ (, 2 )ds

p ds(1--)

Neglecting higher order terms, this reduces to:

1 ) 02w 1 w 1 02 L,
1 = 1(1 + + -- (1+ +---0
p a a Os a aaa 2&

which when substituted into the expression for Kc, gives:

1 02w
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APPENDIX B: Derivation of the Mathieu Stability Equation

The Mathieu differential equation for parametric instability can be most easily derived for the
case of lateral motion of an axially loaded bar [3]. The differential equation for the lateral
dynamic motion of a bar under axial loading is:

E4 U + W 02  0

E 4 + X r ( =2

If the axial loading is of a periodic nature, P(t) = P + P, cos of. the equation of motion becomes:

M W .02 Lu, 02 u.,
El X4 + (Po + Pt cost) 0 +X 2  &

If the response is assumed to be periodic, w(x, t) = f (t) sin '7x. the equation becomes:

02 fn n 4 7r4  .n2w2 rPX
[---2  +EI -, (P1 + Ptcos f,) /2 sin

The internal expression must equal 0, giving:

0,2f ( (1 + P, cos 6t5712  + n p1*1 )I f, 0 ,n =1, 2,3

where w, = 2 is the free vibration frequency of an unloaded bar and, P - >
2 LI is

the Euler buckling load for the bar. This Lan be rewritten as:

fn' + Qn(1 - 2pcos 6t)f, = 0

which is the traditional form of the Mathieu equation where Q,= L,, the bar frequency
VP.*

with applied axial load and Pt = a---,- the excitation parameter. The coefficient of f,
2(P - o)

approaches zero for certain values ol t ie loading function resulting in instability. The more
general case of this function for any periodic loading. P(t) P.+/Pti(t). where -t(t+T) = -t(t).

is known as the 1l1ll equation:

f "+ S12[l - 2tA)(t)]f 0

Functions f(t), must be found to satisfy this equation. This is difficult except for a few
simple cases (see Bolotin[3] and McLachlin[14] for solutions). Parametric resonance of the bar
will occur if the excitation frequency is twice the bar frequency, 6 = 2Q. Regions of instability
can be plotted as functions of tht parameters, Q and p. The shadd regions of Figure B.1 art
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regions of instability. The effect of damping on the system is to shift the regions of instability
away from the Q axis as shown in Figure B.2.

0 . 4r 
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Figure B.1: Regions of Instability from Mathieu Equation (from reference [3])
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Figure B.2. Regions of Instabilit with Damping (from reference [3])
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